Bioorg Med Chem Lett
February 2020
The chemokine system plays an important role in mediating a proinflammatory microenvironment for tumor growth in hepatocellular carcinoma (HCC). The CXCR6 receptor and its natural ligand CXCL16 are expressed at high levels in HCC cell lines and tumor tissues and receptor expression correlates with increased neutrophils in these tissues contributing to poor prognosis in patients. Availability of pharmacologcal tools targeting the CXCR6/CXCL16 axis are needed to elucidate the mechanism whereby neutrophils are affected in the tumor environment.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e.
View Article and Find Full Text PDFNeovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2018
Long-acting glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists (GLP-1RA), such as exendin-4 (Ex4), promote weight loss. On the basis of a newly discovered interaction between GLP-1 and oleoylethanolamide (OEA), we tested whether OEA enhances GLP-1RA-mediated anorectic signaling and weight loss. We analyzed the effect of GLP-1+OEA and Ex4+OEA on canonical GLP-1R signaling and other proteins/pathways that contribute to the hypophagic action of GLP-1RA (AMPK, Akt, mTOR, and glycolysis).
View Article and Find Full Text PDFOxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies.
View Article and Find Full Text PDF