In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications for sustainable beekeeping practices and poses a broader risk to ecological well-being. Addressing these pressing issues requires innovative solutions, one of which involves the development and fabrication of beehives crafted from composite materials that are ecologically compatible with bee biology.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2015
In the field of occupational hygiene, researchers have been working on developing appropriate methods to estimate human exposure to pesticides in order to assess the risk and therefore to take the due decisions to improve the pesticide management process and reduce the health risks. This paper evaluates dermal exposure models to find the most appropriate. Eight models (i.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2013
Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology.
View Article and Find Full Text PDFQuantifying dermal exposure to pesticides in farming systems in developing countries is of special interest for the estimation of potential health risks, especially when there is a lack of occupational hygiene regulations. In this paper we present the results of a dermal exposure assessment for the potato farming system in the highlands of Colombia, where farmers apply pesticides with hand pressure sprayers without any personal protective equipment. The fractioning of the pesticide, in terms of potential and actual dermal exposure, was determined via the whole-body dosimetry methodology, using the tracer uranine as pesticide surrogate, and luminescence spectrometry as analytical method.
View Article and Find Full Text PDF