Ferrous iron (Fe) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB.
View Article and Find Full Text PDFFerrous iron (Fe) is required for the growth and virulence of many pathogenic bacteria, including (), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB.
View Article and Find Full Text PDFIntroduction: Feo is the most widespread and conserved system for ferrous iron uptake in bacteria, and it is important for virulence in several gastrointestinal pathogens. However, its mechanism remains poorly understood. Hitherto, most studies regarding the Feo system were focused on Gammaproteobacterial models, which possess three (, , and ) clustered in an operon.
View Article and Find Full Text PDFIron acquisition is essential for almost all living organisms. In certain environments, ferrous iron is the most prevalent form of this element. Feo is the most widespread system for ferrous iron uptake in bacteria and is critical for virulence in some species.
View Article and Find Full Text PDFIron is an essential element for Escherichia, Salmonella, and species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron.
View Article and Find Full Text PDFIron is an essential element for Vibrio cholerae to survive, and Feo, the major bacterial system for ferrous iron transport, is important for growth of this pathogen in low-oxygen environments. To gain insight into its biochemical mechanism, we evaluated the effects of widely used ATPase inhibitors on the ATP hydrolysis activity of the N-terminal domain of V. cholerae FeoB.
View Article and Find Full Text PDFFeo is the most widely conserved system for ferrous iron transport in prokaryotes, and it is important for virulence in some pathogens. However, its mechanism of iron transport is not fully understood. In this study, we used full-length Vibrio cholerae FeoB (VcFeoB) as a model system to study whether its enzymatic activity is affected by regulatory factors commonly associated with FeoB proteins from other species or with G-proteins that have homology to FeoB.
View Article and Find Full Text PDFThe toxic lineage (TL) of Lysinibacillus sphaericus has been extensively studied because of its potential biotechnological applications in biocontrol of mosquitoes and bioremediation of toxic metals. We previously proposed that L. sphaericus TL should be considered as a novel species based on a comparative genomic analysis.
View Article and Find Full Text PDFMany studies on quorum quenching focus on the discovery and characterization of novel acyl-homoserine lactonases (AHL-lactonases) because these enzymes could be used in the control of diseases caused by Gram-negative bacteria. The effects of quorum quenching are also remarkable in the performance of bacterial consortia in applications such as bioremediation. In the current work, we demonstrated the presence of a potential novel AHL-lactonase-encoding locus (Bsph_3377) from Lysinibacillus sphaericus and Geobacillus sp.
View Article and Find Full Text PDFBackground: Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself.
View Article and Find Full Text PDFLysinibacillus sphaericus is a species that contains strains widely used in the biological control of mosquitoes. Here, we present the complete 4.67-Mb genome of the WHO entomopathogenic reference strain L.
View Article and Find Full Text PDF