Publications by authors named "Camille Vaganay"

Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs.

View Article and Find Full Text PDF

Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment.

View Article and Find Full Text PDF

Background: The pathophysiology of AKI during tumor lysis syndrome (TLS) is not well understood due to the paucity of data. We aimed to decipher crystal-dependent and crystal-independent mechanisms of TLS-induced AKI.

Methods: Crystalluria, plasma cytokine levels, and extracellular histones levels were measured in two cohorts of patients with TLS.

View Article and Find Full Text PDF

By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures.

View Article and Find Full Text PDF

The role of the vascular microenvironment is increasingly studied in acute myeloid leukaemia (AML). Complex interactions between endothelial cells (ECs) and pre-leukaemic cells may contribute to the clonal evolution of pre-leukaemic stem cells in the bone marrow niche and to the proliferation, survival and chemoresistance of leukaemic cells. Through the expression of different adhesion molecules, ECs play a key role in the development of specific acute complications of AML, including leukostasis, acute respiratory failure, acute kidney injury or neurological complications.

View Article and Find Full Text PDF

Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2 acute megakaryoblastic leukemia.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells adapt to stress, creating weaknesses that can be targeted; a study found that VCP, a stress-related protein, is particularly vulnerable in acute myeloid leukemia (AML).
  • The research showed that AML is the most sensitive cancer type to VCP inhibition, validated through various models and techniques.
  • A new VCP inhibitor, CB-5339, was developed and shown to effectively work with DNA-damaging drugs like anthracyclines, supporting its potential for clinical testing in AML treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying how metabolic changes, particularly in amino acid pathways linked to the folate cycle, affect the effectiveness of cancer treatments in acute myeloid leukemia (AML).
  • They found that lower levels of folate and a specific gene variant affecting the MTHFR enzyme can lead to resistance against certain cancer therapies targeting MYC in both lab models and patient samples.
  • Supplementing with CH-THF, a product of the MTHFR enzyme, can potentially overcome this resistance, suggesting that assessing individual folate cycle status may help identify patients who could benefit most from MYC-targeting treatments.
View Article and Find Full Text PDF