Publications by authors named "Camille Regairaz"

Objective: To identify an MS-specific immune cell population by deep immune phenotyping and relate it to soluble signaling molecules in CSF.

Methods: We analyzed surface expression of 22 markers in paired blood/CSF samples from 39 patients using mass cytometry (cytometry by time of flight). We also measured the concentrations of 296 signaling molecules in CSF using proximity extension assay.

View Article and Find Full Text PDF

Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy.

View Article and Find Full Text PDF

Differentiation of B cells is a stringently controlled multi-step process, which is still incompletely understood. Here we identify and characterize a rare population of human B cells, which surprisingly carry CD8AB on their surface. Existence of such cells was demonstrated both in tonsils and in human apheresis material.

View Article and Find Full Text PDF

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis.

View Article and Find Full Text PDF

The low molecular weight compound VAF347, and its pro-drug version VAG539, interact with the transcription factor aryl hydrocarbon receptor (AhR) on monocytes to mediate its anti-inflammatory activity in vitro and in vivo. AhR is a crucial factor for IL-22 production, which regulates skin and gut homeostasis. Here we investigated whether VAF347 might control the differentiation of naïve T cells into IL-22-secreting cells and/or regulate IL-22 production by memory T cells.

View Article and Find Full Text PDF