Publications by authors named "Camille Piro-Megy"

Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that 4 out of 163 tested wild ruminants were positive for RVFV, with a genetic link to a virus from Namibia, indicating RVF's presence in Gabon's wildlife.
  • * In a separate survey of 306 domestic animals, they found 15.4% had RVFV-specific antibodies, predominantly in goats, emphasizing the need for improved surveillance and control measures for RVF in the region.
View Article and Find Full Text PDF

Rift Valley fever (RVF) is an arboviral disease of zoonotic origin that causes recurrent epidemics in Africa, the Arabic Peninsula, and islands of the South West of the Indian Ocean. RVF occurs mainly in livestock but also affects humans with severe clinical manifestations, including neurological disorders. However, human neuropathogenesis of Rift Valley fever virus (RVFV) is still poorly characterized.

View Article and Find Full Text PDF

Mutations in genes encoding components of the mitochondrial DNA (mtDNA) replication machinery cause mtDNA depletion syndromes (MDSs), which associate ocular features with severe neurological syndromes. Here, we identified heterozygous missense mutations in single-strand binding protein 1 (SSBP1) in 5 unrelated families, leading to the R38Q and R107Q amino acid changes in the mitochondrial single-stranded DNA-binding protein, a crucial protein involved in mtDNA replication. All affected individuals presented optic atrophy, associated with foveopathy in half of the cases.

View Article and Find Full Text PDF

Dominant optic atrophy (DOA) is a rare progressive and irreversible blinding disease which is one of the most frequent forms of hereditary optic neuropathy. DOA is mainly caused by dominant mutation in the OPA1 gene encoding a large mitochondrial GTPase with crucial roles in membrane dynamics and cell survival. Hereditary optic neuropathies are commonly characterized by the degeneration of retinal ganglion cells, leading to the optic nerve atrophy and the progressive loss of visual acuity.

View Article and Find Full Text PDF

Inherited retinal dystrophies are clinically and genetically heterogeneous with significant number of cases remaining genetically unresolved. We studied a large family from the West Indies islands with a peculiar retinal disease, the Martinique crinkled retinal pigment epitheliopathy that begins around the age of 30 with retinal pigment epithelium (RPE) and Bruch's membrane changes resembling a dry desert land and ends with a retinitis pigmentosa. Whole-exome sequencing identified a heterozygous c.

View Article and Find Full Text PDF

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C.

View Article and Find Full Text PDF

Mitochondrial complex I (CI) deficiencies are causing debilitating neurological diseases, among which, the Leber Hereditary Optic Neuropathy and Leigh Syndrome are the most frequent. Here, we describe the first germinal pathogenic mutation in the NDUFA13/GRIM19 gene encoding a CI subunit, in two sisters with early onset hypotonia, dyskinesia and sensorial deficiencies, including a severe optic neuropathy. Biochemical analysis revealed a drastic decrease in CI enzymatic activity in patient muscle biopsies, and reduction of CI-driven respiration in fibroblasts, while the activities of complex II, III and IV were hardly affected.

View Article and Find Full Text PDF