Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter.
View Article and Find Full Text PDFTree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size.
View Article and Find Full Text PDFSecondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield.
View Article and Find Full Text PDFUnderstanding how trees mediate the effects of chronic anthropogenic disturbance is fundamental to developing forest sustainable management strategies. The role that intraspecific functional diversity plays in such process is poorly understood. Several tree species are repeatedly defoliated at large scale by cattle breeders in Africa to feed livestock.
View Article and Find Full Text PDFWhen 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery.
View Article and Find Full Text PDFDispersal is usually associated with the spread of invasive species, but it also has two opposing effects, one decreasing and the other increasing the probability of establishment. Indeed, dispersal both slows population growth at the site of introduction and increases the likelihood of surrounding habitat being colonized. The connectivity of the introduction site is likely to affect dispersal, and, thus, establishment, according to the dispersal behaviour of individuals.
View Article and Find Full Text PDFBackground: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e.
View Article and Find Full Text PDF