The maturation of robotic and remote systems presents opportunities to expand the use of technologies that have typically been restricted to high-dose/high-risk nuclear work for moderate- or low-risk work to further reduce radiation exposure to workers. This study quantifies the potential dose savings achieved through the use of robotic techniques for characterizing transuranic-contaminated waste items and compares dose estimates from a simplistic, user-friendly deterministic radiation transport code and a more robust, complex Monte Carlo code. Three scenarios of transuranic-contaminated waste items described in published reports are modeled using representative source geometries in MicroShield and MCNP radiation transport codes.
View Article and Find Full Text PDFA novel approach coupling the finite volume method code Pyro2 and the smoothed particle hydrodynamics code PySPH is introduced and applied to one-dimensional shock problems. The finite volume mesh models the bulk of the system, while regions with discontinuous fluid values are identified and populated with PySPH particles to model the fluid around shocks. The approaches are coupled with boundary cells and ghost particles, with linear interpolation used to extract fluid properties at each timestep in the respective boundary regions.
View Article and Find Full Text PDFA novel relationship between noble metal phase particles and fission gas bubble production in used nuclear fuel is described. The majority of Te atoms within noble metal phase undergo radioactive decay to form stable Xe within a few hours after particle formation. This results in the production of clusters of Xe atoms contained within the solid metal matrix exhibiting an equivalent gas bubble pressure approaching 1 GPa.
View Article and Find Full Text PDFRobots have an important role during inspection, clean-up, and sample collection in unstructured radiation environments inaccessible to humans. The advantages of soft robots, such as body morphing, high compliance, and energy absorption during impact, make them suitable for operating under extreme conditions. Despite their promise, the usefulness of soft robots under a radiation environment has yet to be assessed.
View Article and Find Full Text PDFWe report elemental and isotopic analysis for the noble metal fission product phase found in irradiated nuclear fuel. The noble metal phase was isolated from three commercial irradiated UO fuels by chemically dissolving the UO fuel matrix, leaving the noble metal phase as the undissolved residue. Macro amounts of this residue were dissolved using a KOH + KNO fusion and then chemically separated into individual elements for analysis by mass spectrometry.
View Article and Find Full Text PDF