Publications by authors named "Camille Moyer"

Gene expression models, which are key towards understanding cellular regulatory response, underlie observations of single-cell transcriptional dynamics. Although RNA expression data encode information on gene expression models, existing computational frameworks do not perform simultaneous Bayesian inference of gene expression models and parameters from such data. Rather, gene expression models-composed of gene states, their connectivities and associated parameters-are currently deduced by pre-specifying gene state numbers and connectivity before learning associated rate parameters.

View Article and Find Full Text PDF

Accessing information on an underlying network driving a biological process often involves interrupting the process and collecting snapshot data. When snapshot data are stochastic, the data's structure necessitates a probabilistic description to infer underlying reaction networks. As an example, we may imagine wanting to learn gene state networks from the type of data collected in single molecule RNA fluorescence in situ hybridization (RNA-FISH).

View Article and Find Full Text PDF