The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles.
View Article and Find Full Text PDFHuman respiratory syncytial virus (hRSV) is a major cause of respiratory illness in young children and can cause severe infections in the elderly or in immunocompromised adults. To date, there is no vaccine to prevent hRSV infections, and disease management is limited to preventive care by palivizumab in infants and supportive care for adults. Intervention with small-molecule antivirals specific for hRSV represents a good alternative, but no such compounds are currently approved.
View Article and Find Full Text PDFTargeted therapies have improved the outcome of cancer, but their efficacy is intrinsically limited by the emergence of subclones with a mutation in the gene encoding the target protein. A few examples of collateral sensitivity have demonstrated that the conformational changes induced by these mutations can create unexpected sensitivity to other kinase inhibitors, but whether this concept can be generalized is unknown. Here is described the development of a model to screen a library of kinase inhibitors for collateral sensitivity drugs active on the Bruton Tyrosine Kinase (BTK) protein with the ibrutinib resistance mutation C481S.
View Article and Find Full Text PDFThe essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5'-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently.
View Article and Find Full Text PDFEukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms.
View Article and Find Full Text PDF