In spite of extensive studies on human walking, less research has been conducted on human walking gait adaptation during interaction with another human. In this paper, we study a particular case of interactive locomotion where two humans carry a rigid object together. Experimental data from two persons walking together, one in front of the other, while carrying a stretcher-like object is presented, and the adaptation of their walking gaits and coordination of the foot-fall patterns are analyzed.
View Article and Find Full Text PDFGait recovery after neurological disorders requires remastering the interplay between body mechanics and gravitational forces. Despite the importance of gravity-dependent gait interactions and active participation for promoting this learning, these essential components of gait rehabilitation have received comparatively little attention. To address these issues, we developed an adaptive algorithm that personalizes multidirectional forces applied to the trunk based on patient-specific motor deficits.
View Article and Find Full Text PDFBackground: Miscellaneous features from various domains are accepted to be associated with the risk of falling in the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall onset. A model that would objectively and easily evaluate the risk of a first fall occurrence in the coming year still needs to be built.
View Article and Find Full Text PDFElectrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion.
View Article and Find Full Text PDFPhysiological aging leads to a progressive weakening of muscles and tendons, thereby disturbing the ability to control postural balance and consequently increasing exposure to the risks of falls. Here, we introduce a simple and easy-to-use neuromuscular electrical stimulation (NMES) training paradigm designed to alleviate the postural control deficit in the elderly, the first hallmarks of which present as functional impairment. Nine pre-frail older women living in a long-term care facility performed 4 weeks of NMES training on their plantarflexor muscles, and seven nontrained, non-frail older women living at home participated in this study as controls.
View Article and Find Full Text PDFSpinal cord injury leads to a range of disabilities, including limitations in locomotor activity, that seriously diminish the patients' autonomy and quality of life. Electrochemical neuromodulation therapies, robot-assisted rehabilitation and willpower-based training paradigms restored supraspinal control of locomotion in rodent models of severe spinal cord injury. This treatment promoted extensive and ubiquitous remodeling of spared circuits and residual neural pathways.
View Article and Find Full Text PDF