Publications by authors named "Camille Goudenhooft"

Flax (Linum usitatissimum L.) is a plant of industrial importance, its fibres being presently used for high-value textile applications, composite reinforcements as well as natural actuators. Human interest in this fibre-rich plant dates back several millennia, including to Ancient Egypt where flax was used extensively in various quotidian items.

View Article and Find Full Text PDF

Due to the combination of high mechanical performances and plant-based origin, flax fibers are interesting reinforcement for environmentally friendly composite materials. An increasing amount of research articles and reviews focuses on the processing and properties of flax-based products, without taking into account the original key role of flax fibers, namely, reinforcement elements of the flax stem ( L.).

View Article and Find Full Text PDF

Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time.

View Article and Find Full Text PDF

Nanofibrous membranes based on polycaprolactone (PCL) have a large potential for use in biomedical applications but are limited by the hydrophobicity of PCL. Blend electrospinning of PCL with other biomedical suited materials, such as gelatin (Gt) allows for the design of better and new materials. This study investigates the possibility of blend electrospinning PCL/Gt nanofibrous membranes which can be used to design a range of novel materials better suited for biomedical applications.

View Article and Find Full Text PDF

The present paper proposes to carefully study and describe the reinforcement mechanisms within a flax stem, which is an exceptional natural model of composite structure. Thanks to accurate microscopic investigations, with both optical and SEM method, we finely depicted the flax stem architecture, which can be view as a composite structure with an outer protection, a unidirectional ply on the periphery and a porous core; each component has a specific function, such as mechanical reinforcement for the unidirectional ply and the porous core. The significant mechanical role of fibres was underlined, as well as their local organisation in cohesive bundles, obtained because of an intrusive growth and evidenced in this work through nanomechanical AFM measurement and 3D reconstruction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsje9r9hbfdljo1dg9drtvjmqec66lh5q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once