Publications by authors named "Camille Goldman"

Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles.

View Article and Find Full Text PDF

Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a key physiological component of the central nervous system (CNS), maintaining nutrients, clearing waste, and protecting the brain from pathogens. The inherent barrier properties of the BBB pose a challenge for therapeutic drug delivery into the CNS to treat neurological diseases. Impaired BBB function has been related to neurological disease.

View Article and Find Full Text PDF

The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region.

View Article and Find Full Text PDF

Here, we describe a high-throughput 3D differentiation protocol for deriving midbrain dopaminergic neurons from human pluripotent stem cells. The use of organoids has become prevalent in disease modeling, but there is a high demand for more homogeneous cultures. Our approach is advantageous for large-scale production of uniform midbrain organoids that can be maintained in diverse formats, and our reporters allow for sorting of dopaminergic neurons.

View Article and Find Full Text PDF

The β5 subunit of the proteasome has been shown in worms and in human cell lines to be regulatory. In these models, β5 overexpression results in upregulation of the entire proteasome complex which is sufficient to increase proteotoxic stress resistance, improve metabolic parameters, and increase longevity. However, fundamental questions remain unanswered, including the temporal requirements for β5 overexpression and whether β5 overexpression can extend lifespan in other species.

View Article and Find Full Text PDF