Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations.
View Article and Find Full Text PDF