Publications by authors named "Camille Genies"

In a read-across assessment of the safety of genistein and daidzein in cosmetic products, additional information was required to account for differences in their systemic exposure after topical application in a typical body lotion formulation. Therefore, we measured the penetration and metabolism of two doses (3 and 30 nmoles/cm) of genistein and daidzein applied in ethanol and in a body formulation to fresh pig skin, fresh and frozen human skin, and PhenionFT models. Both chemicals readily penetrated all skin models when applied in ethanol.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the skin penetration and metabolism of genistein and daidzein, two compounds lacking OECD-compliant studies, using various skin models including fresh pig skin and human skin.
  • It was found that all models showed similar dermal absorption rates for both compounds, with some differences in metabolite production, particularly lower sulfate conjugates in pig skin.
  • Freezing human skin affected the metabolism but did not change the overall absorption, indicating that genistein and daidzein can extensively penetrate skin when applied in ethanol despite differences in metabolism across models.
View Article and Find Full Text PDF

We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only data were used for daidzein, while and legacy data for genistein were considered. The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.

View Article and Find Full Text PDF

In recent years, interest is growing in the biological cutaneous effects of high-energy visible light (400-450 nm). In the present study, we explored the impact of blue light (BL) on the repair of pyrimidine dimers, the major class of premutagenic DNA damage induced by exposure to sunlight. We unambiguously demonstrate that the exposure of in vitro reconstructed human epidermis to environmentally relevant doses of BL strongly decreases the rate of repair of cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts induced by a subsequent UVB irradiation.

View Article and Find Full Text PDF

Sunscreens have been shown to protect against UVR-induced DNA damage in human skin under laboratory conditions. We presently extended these observations to real-life conditions in volunteers after their ordinary exposure habits during summer holidays. Volunteers were randomly assigned to a control group and an educated group supplied with a SPF ≥50 sunscreen and receiving instructions for use.

View Article and Find Full Text PDF

All cosmetic ingredients registered in Europe must be evaluated for their safety using non-animal methods. Microphysiological systems (MPS) offer a more complex higher tier model to evaluate chemicals. Having established a skin and liver HUMIMIC Chip2 model demonstrating how dosing scenarios impact the kinetics of chemicals, we investigated whether thyroid follicles could be incorporated to evaluate the potential of topically applied chemicals to cause endocrine disruption.

View Article and Find Full Text PDF

UV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography-mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery.

View Article and Find Full Text PDF

Objective: Deleterious effects of pollutants and ultraviolet radiation on the skin can be attenuated using formulations containing antioxidants. However, these have disadvantages, including chemical instability, photodegradation, poor bioavailability or biological activity. Here, two commercial formulations were evaluated: one optimized to stabilize and deliver ascorbic acid (AA) at 15% and the other containing a glucoside form of AA, namely ascorbic acid 2-glucoside (AA2G), at 1.

View Article and Find Full Text PDF

Objective: We investigated the dermal bioavailability and antioxidative properties of a sunscreen formulation containing two antioxidants, oxothiazolidine (OTZ) and δ-tocopheryl glucoside (DTG). OTZ reacts directly with reactive oxygen species to form taurine, while DTG is metabolized in δ-tocopherol to achieve antioxidative activities.

Methods: After topical application to a hair follicle-derived reconstructed human epidermis (RHE) model, followed by solar-simulated radiation, kinetics of bioavailability and antioxidative responses were measured over 24 h.

View Article and Find Full Text PDF

We used TissUse's HUMIMIC Chip2 microfluidic model, incorporating reconstructed skin models and liver spheroids, to investigate the impact of consumer-relevant application scenarios on the metabolic fate of the hair dye, 4-amino-2-hydroxytoluene (AHT). After a single topical or systemic application of AHT to Chip2 models, medium was analysed for parent and metabolites over 5 days. The metabolic profile of a high dose (resulting in a circuit concentration of 100 μM based on 100% bioavailability) of AHT was the same after systemic and topical application to 96-well EpiDerm™ models.

View Article and Find Full Text PDF

Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested.

View Article and Find Full Text PDF

Parabens are alkyl esters of 4-hydroxybenzoic acid (4-HBA), with short-chain parabens used as antimicrobials in cosmetics. We investigated the impact of chain structure on skin and liver metabolism. Incubations with primary human hepatocytes and human liver S9 indicated that methyl-, ethyl-, propyl- and butylparaben were rapidly metabolized to similar metabolites, including 4-HBA plus the corresponding alcohols.

View Article and Find Full Text PDF

A standard protocol was used to determine partition (K) and diffusion (D) coefficients in dermatomed human skin and isolated human skin layers for 50 compounds relevant to cosmetics ingredients. K values were measured in dermatomed skin, isolated dermis, whole epidermis, intact stratum corneum (SC), delipidized SC and SC lipids by direct measurements of the radioactivity in the tissue layers/lipid component vs. buffer samples.

View Article and Find Full Text PDF

The abundance of xenobiotic metabolizing enzymes (XMEs) is different in the skin and liver; therefore, it is important to differentiate between liver and skin metabolism when applying the information to safety assessment of topically applied ingredients in cosmetics. Here, we have employed EpiSkin™ S9 and human liver S9 to investigate the organ-specific metabolic stability of 47 cosmetic-relevant chemicals. The rank order of the metabolic rate of six chemicals in primary human hepatocytes and liver S9 matched relatively well.

View Article and Find Full Text PDF

OECD test guideline 428 compliant protocol using human skin was used to test the penetration of 56 cosmetic-relevant chemicals. The penetration of finite doses (10 μL/cm ) of chemicals was measured over 24 hours. The dermal delivery (DD) (amount in the epidermis, dermis and receptor fluid [RF]) ranged between 0.

View Article and Find Full Text PDF

An understanding of the bioavailability of topically applied cosmetics ingredients is key to predicting their local skin and systemic toxicity and making a safety assessment. We investigated whether short-term incubations with S9 from the reconstructed epidermal skin model, EpiSkin™, would give an indication of the rate of chemical metabolism and produce similar metabolites to those formed in incubations with human skin explants. Both have advantages: EpiSkin™ S9 is a higher-throughput assay, while the human skin explant model represents a longer incubation duration (24 hours) model integrating cutaneous distribution with metabolite formation.

View Article and Find Full Text PDF

Background: We tested the cutaneous distribution of 50 chemicals in frozen human skin. The mass balance (MB) values for 48% of the chemicals were < 90%, possibly due to evaporation.

Methods: We confirmed the reduction in MB was due to evaporation for two chemicals tested in skin penetration experiments using a carbon filter above the skin to trap airborne chemical.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which exhibit carcinogenic properties especially in lungs. In the present work, we studied the effect of mixtures of 12 PAHs on the A549 alveolar cells. We first assess the ability of each PAH at inducing gene expression of phase I metabolization enzymes and at generating DNA adducts.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are associated with occupational exposure and urban atmospheric pollution. Determination of the genotoxic properties of these compounds is thus of outmost importance. For this purpose a variety of cellular models have been widely used.

View Article and Find Full Text PDF