DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination.
View Article and Find Full Text PDFFanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan.
View Article and Find Full Text PDFCells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way.
View Article and Find Full Text PDFDNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells and . NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion.
View Article and Find Full Text PDFEukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates.
View Article and Find Full Text PDFGenome instability is a hallmark of cancer cells. The joining of distant DNA double-strand ends (DSEs) ineluctably leads to genome rearrangements. We found that the cohesion complex maintains genome stability by repressing the joining of distant DSEs specifically in the S phase, i.
View Article and Find Full Text PDFDNA double-strand breaks (DSB) are very harmful lesions that can generate genome rearrangements. In this study, we used intrachromosomal reporters to compare both the efficiency and accuracy of end-joining occurring with close (34 bp apart) vs. distant DSBs (3200 bp apart) in human fibroblasts.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair is essential for genome stability maintenance, but the joining of distant DNA double strand ends (DSEs) inevitably leads to genome rearrangements. Therefore, DSB repair should be tightly controlled to secure genome stability while allowing genetic variability. Tethering of the proximal ends of a 2-ended DSB limits their mobility, protecting thus against their joining with a distant DSE.
View Article and Find Full Text PDFThe end joining of distant DNA double-strand ends (DSEs) can produce potentially deleterious rearrangements. We show that depletion of cohesion complex proteins specifically stimulates the end joining (both C-NHEJ and A-EJ) of distant, but not close, I-SceI-induced DSEs in S/G2 phases. At the genome level, whole-exome sequencing showed that ablation of RAD21 or Sororin produces large chromosomal rearrangements (translocation, duplication, deletion).
View Article and Find Full Text PDFThe faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence.
View Article and Find Full Text PDF