Objective: The aim of this work is to demonstrate a novel single-molecule DNA sequence comparison assay that is purely based on DNA mechanics.
Methods: A molecular construct that contained the two homologous but non-identical DNA sequences that were to be compared was prepared such that a four-way (Holliday) junction could be formed by the formation of heteroduplexes through the inter-recombination of the strands. Magnetic tweezers were used to manipulate the force and the winding applied to this construct for inducing both the formation and the migration of a Holliday junction.
A magnetic tweezers setup is used to control both the stretching force and the relative linking number DeltaLk of a palindromic DNA molecule. We show here, in absence of divalent ions, that twisting negatively the molecule while stretching it at approximately 1 pN induces the formation of a cruciform DNA structure. Furthermore, once the cruciform DNA structure is formed, the extrusion of several kilo-base pairs of palindromic DNA sequence is directly and reversibly controlled by varying DeltaLk.
View Article and Find Full Text PDF