Publications by authors named "Camille Bois"

Spermatogenesis, which is the fundamental mechanism allowing male gamete production, is controlled by several factors, and among them, estrogens are likely concerned. In order to enlighten the potential role of estrogen in rat spermatogenesis, seminiferous tubules (ST) from two groups of seminiferous epithelium stages (II-VIII and IX-I) were treated with either 17β-estradiol (E(2)) agonists or antagonists for estrogen receptors (ESRs). In this study, we show that cyclin A1 and cyclin B1 gene expression is controlled by E(2) at a concentration of 10(-9) M only in stages IX-I.

View Article and Find Full Text PDF

1α,25-Dihydroxyvitamin D(3) (1,25D(3)) is critical for the maintenance of normal reproduction since reduced fertility is observed in vitamin D-deficient male rats. The aim of this study was to investigate the effect of 1,25D(3) in 30-day-old rat testicular plasma membrane targets (calcium uptake and gamma-glutamyl transpeptidase (GGTP) activity), as well as to highlight the role of protein kinases in the mechanism of action of 1,25D(3). The results demonstrated that 1,25D(3) induced a fast increase in calcium uptake in rat testis through a nongenomic mechanism of action.

View Article and Find Full Text PDF

The steroid hormone 1α,25(OH)(2)-vitamin D(3) (1,25D(3)) regulates gene transcription through a nuclear receptor (VDRnuc) and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDRmem). It has been described that successful mating and fertility rates are significantly decreased in vitamin D deficient male rats and a VDR null mutant rodent has decreased sperm count and motility and expresses rare spermatogenesis. Although the Sertoli cells are pointed as the major target of 1,25D(3) in the testis the mechanism of 1,25D(3) action, particularly in Sertoli cells, remains unclear.

View Article and Find Full Text PDF

Aim of the present study was to investigate whether estrogens were able to directly activate rapid signaling pathways controlling spermatogenesis in rat pachytene spermatocytes (PS). Classically, estrogens act by binding to estrogen receptors (ERs) alpha and beta. Recently, it has been demonstrated that rapid estrogen action can also be activated through the G-protein-coupled receptor (GPR)-30.

View Article and Find Full Text PDF

Objective: The aromatase enzyme catalyzes the final stage of estrogen biosynthesis pathway from androgens. Its expression in the adrenal is poorly studied except for the rare estrogen-producing adrenocortical tumors. In order to further characterize aromatase expression in the adrenal, we evaluated the aromatase enzyme activity, Cyp19a1 gene expression level, and promoter utilization in normal adrenal tissues and in adrenocortical secreting tumors.

View Article and Find Full Text PDF

The mammalian testis serves two main functions: production of spermatozoa and synthesis of steroids; among them, estrogens are the end products obtained from the irreversible transformation of androgens by aromatase. The aromatase is encoded by a single gene (cyp19) in humans which contains 18 exons, 9 of them being translated. In rat the aromatase activity is mainly located in Sertoli cells of immature animals and then in Leydig cells of adults.

View Article and Find Full Text PDF