Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes.
View Article and Find Full Text PDFLactate is an intriguing molecule with emerging physiological roles in the brain. It has beneficial effects in animal models of acute brain injuries and traumatic brain injury or subarachnoid hemorrhage patients. However, the mechanism by which lactate provides protection is unclear.
View Article and Find Full Text PDFUnlabelled: Edema is a hallmark of many brain disorders including stroke. During vasogenic edema, blood-brain barrier (BBB) permeability increases, contributing to the entry of plasma proteins followed by water. Caveolae and caveolin-1 (Cav-1) are involved in these BBB permeability changes.
View Article and Find Full Text PDFComplex cellular and molecular events occur in the neurovascular unit after stroke, such as blood-brain barrier (BBB) dysfunction and inflammation that contribute to neuronal death, neurological deterioration and mortality. Caveolin-1 (Cav-1) has distinct physiological functions such as caveolae formation associated with endocytosis and transcytosis as well as in signaling pathways. Cav-1 has been proposed to be involved in BBB dysfunction after brain injury; however, its precise role is poorly understood.
View Article and Find Full Text PDFObjective: Understanding the coding of neural activity in nerve fascicles is a high priority in computational neuroscience, electroceutical autonomic nerve stimulation and functional electrical stimulation for treatment of paraplegia. Unfortunately, it has been little studied as no technique has yet been available to permit imaging of neuronal depolarization within fascicles in peripheral nerve.
Approach: We report a novel method for achieving this, using a flexible cylindrical multi-electrode cuff placed around nerve and the new medical imaging technique of fast neural electrical impedance tomography (EIT).
We aimed at better understanding the brain mechanisms involved in the processing of alerting meaningful sounds during sleep, investigating alpha activity. During EEG acquisition, subjects were presented with a passive auditory oddball paradigm including rare complex sounds called Novels (the own first name - OWN, and an unfamiliar first name - OTHER) while they were watching a silent movie in the evening or sleeping at night. During the experimental night, the subjects' quality of sleep was generally preserved.
View Article and Find Full Text PDFStudies in cognitive psychology showed that personality (openness to experience, thin boundaries, absorption), creativity, nocturnal awakenings, and attitude toward dreams are significantly related to dream recall frequency (DRF). These results suggest the possibility of neurophysiological trait differences between subjects with high and low DRF. To test this hypothesis we compared sleep characteristics and alpha reactivity to sounds in subjects with high and low DRF using polysomnographic recordings and electroencephalography (EEG).
View Article and Find Full Text PDF