Publications by authors named "Camille Bishop"

Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature T.

View Article and Find Full Text PDF

We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 T to 0.

View Article and Find Full Text PDF

We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.

View Article and Find Full Text PDF

The instability of glassy solids poses a key limitation to their use in several technological applications. Well-packed organic glasses, prepared by physical vapor deposition (PVD), have drawn attention recently because they can exhibit significantly higher thermal and chemical stability than glasses prepared from more traditional routes. We show here that PVD glasses can also show enhanced resistance to crystallization.

View Article and Find Full Text PDF

The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature T.

View Article and Find Full Text PDF

While the bulk structure of vapor-deposited glasses has been extensively studied, structure at buried interfaces has received little attention, despite being important for organic electronic applications. To learn about glass structure at buried interfaces, we study the structure of vapor-deposited glasses of the organic semiconductor DSA-Ph (1,4-di-[4-(,-diphenyl)amino]styrylbenzene) as a function of film thickness; the structure is probed with grazing incidence X-ray scattering. We deposit on silicon and gold substrates and span a film thickness range of 10-600 nm.

View Article and Find Full Text PDF

The anisotropic properties of organic glasses produced by physical vapor deposition (PVD) depend upon substrate temperature and deposition rate. In recent work, it was shown for a liquid crystalline system that the anisotropic structure of the glass was controlled by a single combined variable as indicated by the observation of deposition rate-substrate temperature superposition (RTS). Here we test the utility of RTS for posaconazole, a molecule that does not form liquid crystals.

View Article and Find Full Text PDF

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction.

View Article and Find Full Text PDF

We show that deposition rate substantially affects the anisotropic structure of thin glassy films produced by physical vapor deposition. Itraconazole, a glass-forming liquid crystal, was deposited at rates spanning 3 orders of magnitude over a 25 K range of substrate temperatures, and structure was characterized by ellipsometry and X-ray scattering. Both the molecular orientation and the spacing of the smectic layers obey deposition rate-substrate temperature superposition, such that lowering the deposition rate is equivalent to raising the substrate temperature.

View Article and Find Full Text PDF

Controlling the orientation of liquid crystal (LC) molecules towards contacting surfaces is a crucial requirement for the development of LC displays and passive electro-optical devices. Up to now, research has been focused on photo-responses of a LC azobenzene polymer system to obtain either planar or homeotropic orientation of LCs. It remains a challenge, however, to tune the polar angle of LC molecules on the solid surface and gain more insights about the polymer chain conformation extending in LC medium.

View Article and Find Full Text PDF

In exploiting topological defects of liquid crystals as the targeting sites for trapping colloidal objects, previous work has relied on topographic features with uniform anchoring to create defects, achieving limited density and spacing of particles. We report a generalizable strategy to create topological defects on chemically patterned surfaces to assemble particles in precisely defined locations with a tunable interparticle distance at nanoscale dimensions. Informed by experimental observations and numerical simulations that indicate that liquid crystals, confined between a homeotropic-anchoring surface and a surface with lithographically defined planar-anchoring stripes in a homeotropic-anchoring background, display splay-bend deformation, we successfully create pairs of defects and subsequently trap particles with controlled spacing by designing patterns of intersecting stripes aligned at 45° with homeotropic-anchoring gaps at the intersections.

View Article and Find Full Text PDF

We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, T, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at T very near the glass transition temperature (T) are highly ordered.

View Article and Find Full Text PDF

The morphology and through-film optical properties of nematic liquid crystals (LCs) confined between two surfaces may be engineered to create switches that respond to external electric fields, thereby enabling applications in optoelectronics that require fast responses and low power. Interfacial properties between the confining surfaces and the LC play a central role in device design and performance. Here we investigate the morphology of LCs confined in hybrid cells with a top surface that exhibits uniform homeotropic anchoring and a bottom surface that is chemically patterned with sub-micron and micron- wide planar anchoring stripes in a background of homeotropic anchoring.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondrlu4qk82am8k15gahkela1b4eufgnhf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once