Publications by authors named "Camille Belanger-Champagne"

Phosphorous-doped silica optical fibres with a core diameter of 4 µm were tested in X-ray and proton fields for application in cancer therapy dosimetry. Specifically, the radiation-induced attenuation was investigated in terms of linearity in deposited dose in 15 MV and 6 MV photons and 74 MeV protons, as well as Bragg-peak detection along the proton track. Fibres were found to demonstrate linear relative dose response in both radiation modalities, but possible saturation did occur at the high linear energy transfer of the Bragg peak.

View Article and Find Full Text PDF

The potential of fiber-based sensors to monitor the fluence of atmospheric neutrons is evaluated through accelerated tests at the TRIUMF Neutron Facility (TNF) (BC, Canada), offering a flux approximatively 10 higher than the reference spectrum observed under standard conditions in New York City, USA. The radiation-induced attenuation (RIA) at 1625 nm of a phosphorus-doped radiation sensitive optical fiber is shown to linearly increase with neutron fluence, allowing an in situ and easy monitoring of the neutron flux and fluence at this facility. Furthermore, our experiments show that the fiber response remains sensitive to the ionization processes, at least up to a fluence of 7.

View Article and Find Full Text PDF

A thin 5-mm NaI(Tl) scintillator detector was tested with the goal of enhancing the detection efficiency of Am gamma and X rays for steelworks operations. The performance of a thin (5 mm) NaI(Tl) detector was compared with a standard 76.2-mm thick NaI(Tl) detector.

View Article and Find Full Text PDF

The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing.

View Article and Find Full Text PDF