Publications by authors named "Camilla Urbaniak"

The pressing need to safeguard the health of astronauts aboard the International Space Station (ISS) necessitates constant and rigorous microbial monitoring. Recognizing the shortcomings of traditional culture-based methods, NASA is deliberating the incorporation of molecular-based techniques. The challenge, however, lies in developing and validating effective methods for concentrating samples to facilitate this transition.

View Article and Find Full Text PDF

With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space.

View Article and Find Full Text PDF

Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis.

View Article and Find Full Text PDF

Finding sustainable approaches to achieve independence from terrestrial resources is of pivotal importance for the future of space exploration. This is relevant not only to establish viable space exploration beyond low Earth-orbit, but also for ethical considerations associated with the generation of space waste and the preservation of extra-terrestrial environments. Here we propose and highlight a series of microbial biotechnologies uniquely suited to establish sustainable processes for in situ resource utilization and loop-closure.

View Article and Find Full Text PDF

Background: The International Space Station (ISS) is a unique and complex built environment with the ISS surface microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome profiles without using whole-genome amplification. The study surveyed the microbial communities from eight surfaces over a 14-month period.

View Article and Find Full Text PDF

During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases.

View Article and Find Full Text PDF

Background: The Spacecraft Assembly Facility (SAF) at the NASA's Jet Propulsion Laboratory is the primary cleanroom facility used in the construction of some of the planetary protection (PP)-sensitive missions developed by NASA, including the Mars 2020 Perseverance Rover that launched in July 2020. SAF floor samples (n=98) were collected, over a 6-month period in 2016 prior to the construction of the Mars rover subsystems, to better understand the temporal and spatial distribution of bacterial populations (total, viable, cultivable, and spore) in this unique cleanroom.

Results: Cleanroom samples were examined for total (living and dead) and viable (living only) microbial populations using molecular approaches and cultured isolates employing the traditional NASA standard spore assay (NSA), which predominantly isolated spores.

View Article and Find Full Text PDF

Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the potential contribution of the breast microbiome, lipid profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42 with breast cancer.

View Article and Find Full Text PDF

Bacteria are able to adapt and survive in harsh and changing environments through many mechanisms, with one of them being horizontal gene transfer (HGT). This process is one of the leading culprits in the spread of antimicrobial resistance (AMR) within bacterial communities and could pose a significant health threat to astronauts if they fell ill, especially on long-duration space missions. In order to better understand the degree of HGT activity that could occur in space, biosafety level-2, donor and recipient bacteria were co-cultured under simulated microgravity (SMG) on Earth with concomitant 1G controls.

View Article and Find Full Text PDF

As part of the Microbial Tracking-2 study, 94 fungal strains were isolated from surfaces on the International Space Station, and whole-genome sequences were assembled. Characterization of these draft genomes will allow evaluation of microgravity adaption, risks to human health and spacecraft functioning, and biotechnological applications of fungi.

View Article and Find Full Text PDF

The International Space Station (ISS) is a uniquely enclosed environment that has been continuously occupied for the last two decades. Throughout its operation, protecting the health of the astronauts on-board has been a high priority. The human microbiome plays a significant role in maintaining human health, and disruptions in the microbiome have been linked to various diseases.

View Article and Find Full Text PDF

Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health.

View Article and Find Full Text PDF

Microbial monitoring on the International Space Station (ISS) is essential to keep astronauts healthy. Current practice involves culture-based methods, but future directives by the National Aeronautics and Space Administration (NASA) will require the use of molecular-based approaches, such as quantitative PCR (qPCR). However, in order to successfully and reliably detect the allowable limit of 5 × 10 colony forming units (CFUs) of bacteria per liter in potable water on the ISS with qPCR, water concentration must first be performed.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted person to person through inhalation of droplets or aerosols, laden with viral particles. However, as recent studies have shown, virions can remain infectious for up to 72 h on surfaces, which can lead to transmission through contact. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments.

View Article and Find Full Text PDF

NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The team has developed the μTitan (simulated micro() gravity ested nsrument for utomated ucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity.

View Article and Find Full Text PDF

Colonization by the microbiota causes a marked stimulation of B cells and induction of immunoglobulin, but mammals colonized with many taxa have highly complex and individualized immunoglobulin repertoires. Here we use a simplified model of defined transient exposures to different microbial taxa in germ-free mice to deconstruct how the microbiota shapes the B cell pool and its functional responsiveness. We followed the development of the immunoglobulin repertoire in B cell populations, as well as single cells by deep sequencing.

View Article and Find Full Text PDF

Microbial contamination during long-term confinements of space exploration presents potential risks for both crew members and spacecraft life support systems. A novel swab kit was used to sample various surfaces from a submerged, closed, analog habitat to characterize the microbial populations. Samples were collected from various locations across the habitat which were constructed from various surface materials (linoleum, dry wall, particle board, glass, and metal), and microbial populations were examined by culture, quantitative PCR (qPCR), microbiome 16S rRNA gene sequencing, and shotgun metagenomics.

View Article and Find Full Text PDF

The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember's microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight.

View Article and Find Full Text PDF

Background: Spaceflight impacts astronauts in many ways but little is known on how spaceflight affects the salivary microbiome and the consequences of these changes on astronaut health, such as viral reactivation. In order to understand this, the salivary microbiome was analyzed with 16S rRNA gene amplicon sequencing, and saliva viral titers were analyzed with quantitative polymerase chain reaction (qPCR) with primers specific for Epstein-Barr virus (EBV), herpes simplex virus (HSV), and varicella zoster virus (VZV) from 10 astronauts pre-flight, in-flight, and post-flight.

Results: Streptococcus was the most abundant organism in the saliva, making up 8% of the total organisms detected, and their diversity decreased during spaceflight.

View Article and Find Full Text PDF

Background: The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces.

View Article and Find Full Text PDF

Two isolates of Fusarium oxysporum, ISS-F3 and ISS-F4, were cultured from the dining table on the International Space Station (ISS). Genomic analyses using EF-1α sequences, presence/absence of effector proteins, k-mer comparisons, and single nucleotide polymorphisms indicate that these two strains are genomically different from 65 known sequenced strains. Functional analysis revealed that ISS-F3/F4 had higher relative abundances of polyketide synthase domains than a non-plant-pathogenic soil isolate, used for biocontrol properties (Fo47), and a clinical isolate (FOSC-3a).

View Article and Find Full Text PDF

Here, we present the draft whole-genome sequence of a clinical isolate of cultured from a patient undergoing chemotherapy for refractory acute myeloid leukemia.

View Article and Find Full Text PDF

Here, we present the whole-genome sequences of two isolates cultured from infected plants that were grown onboard the International Space Station (ISS).

View Article and Find Full Text PDF

Unlabelled: In the United States, 1 in 8 women will be diagnosed with breast cancer in her lifetime. Along with genetics, the environment contributes to disease development, but what these exact environmental factors are remains unknown. We have previously shown that breast tissue is not sterile but contains a diverse population of bacteria.

View Article and Find Full Text PDF