Global warming is rapidly changing the phenology, distribution, behaviour and demography of wild animal populations. Recent studies in wild animals have shown that high temperatures can induce short-term cognitive impairment, and captive studies have demonstrated that heat exposure during early development can lead to long-term cognitive impairment. Given that cognition underpins behavioural flexibility and can be directly linked to fitness, understanding how high temperatures during early life might impact adult cognitive performance in wild animals is a critical next step to predict wildlife responses to climate change.
View Article and Find Full Text PDFGlobal temperatures are increasing rapidly. While considerable research is accumulating regarding the lethal and sublethal effects of heat on wildlife, its potential impact on animal cognition has received limited attention. Here, we tested wild southern pied babblers () on three cognitive tasks (associative learning, reversal learning and inhibitory control) under naturally occurring heat stress and non-heat stress conditions.
View Article and Find Full Text PDFCosts and benefits of brain lateralization may depend on environmental conditions. Growing evidence indicates that the development of brain functional asymmetries is adaptively shaped by the environmental conditions experienced during early life. Food availability early in life could act as a proxy of the environmental conditions encountered during adulthood, but its potential modulatory effect on lateralization has received little attention.
View Article and Find Full Text PDFIdentifying the causes and fitness consequences of intraspecific variation in cognitive performance is fundamental to understand how cognition evolves. Selection may act on different cognitive traits separately or jointly as part of the general cognitive performance (GCP) of the individual. To date, few studies have examined simultaneously whether individual cognitive performance covaries across different cognitive tasks, the relative importance of individual and social attributes in determining cognitive variation, and its fitness consequences in the wild.
View Article and Find Full Text PDFWith global temperatures rapidly increasing, biologists require tools to assess how wild animals are responding to heat. Thermal imaging of the eye region offers a potential non-invasive alternative to traditional techniques to study thermoregulation and stress responses in wild animals. However, we currently have a poor understanding of how the temperature of the eye region is regulated under increasing temperature and whether this regulation differs among individuals.
View Article and Find Full Text PDF