Objective: To compare postprandial glucose excursions following a bolus with inhaled technosphere insulin (TI) or subcutaneous rapid-acting analog (RAA) insulin.
Research Design And Methods: A meal challenge was completed by 122 adults with type 1 diabetes who were using multiple daily injections (MDI), a nonautomated pump, or automated insulin delivery (AID) and who were randomized to bolus with their usual RAA insulin (n = 61) or TI (n = 61).
Results: The primary outcome, the treatment group difference in area under the curve for glucose >180 mg/dL over 2 h, was less with TI versus RAA (adjusted difference -12 mg/dL, 95% CI -22 to -2, P = 0.
Background: Customized and standard automated insulin delivery (AID) systems for use in pregnancies of women with preexisting type 1 diabetes (T1D) are being developed and tested to achieve pregnancy appropriate continuous glucose monitoring (CGM) targets. Guidance on the use of CGM for treatment decisions during pregnancy in the United States is limited.
Methods: Ten pregnant women with preexisting T1D participated in a trial evaluating at-home use of a pregnancy-specific AID system.
The t:slim X2 insulin pump with Control-IQ technology (Control-IQ) advanced hybrid closed-loop automated insulin delivery system was evaluated in this prospective single-arm trial. Thirty adults with type 2 diabetes using the Control-IQ system showed substantial glycemic improvement with no increase in hypoglycemia. Mean time in range (70-180 mg/dL) improved 15%, representing an increase of 3.
View Article and Find Full Text PDFTreatment for type 1 diabetes (T1D) requires stimulation of functional β cell regeneration and survival under stress. Previously, we showed that inhibition of the RANKL/RANK [receptor activator of nuclear factor kappa Β (NF-κB) ligand] pathway, by osteoprotegerin and the anti-osteoporotic drug denosumab, induces rodent and human β cell proliferation. We demonstrate that the RANK pathway mediates cytokine-induced rodent and human β cell death through RANK-TRAF6 interaction and induction of NF-κB activation.
View Article and Find Full Text PDFObjective: There are no commercially available hybrid closed-loop insulin delivery systems customized to achieve pregnancy-specific glucose targets in the U.S. This study aimed to evaluate the feasibility and performance of at-home use of a zone model predictive controller-based closed-loop insulin delivery system customized for pregnancies complicated by type 1 diabetes (CLC-P).
View Article and Find Full Text PDFAutomated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm.
View Article and Find Full Text PDFBackground: We investigated the potential benefits of automated insulin delivery (AID) among individuals with type 1 diabetes (T1D) in sub-populations of baseline device use determined by continuous glucose monitor (CGM) use status and insulin delivery via multiple daily injections (MDI) or insulin pump.
Materials And Methods: In a six-month randomized, multicenter trial, 168 individuals were assigned to closed-loop control (CLC, Control-IQ, Tandem Diabetes Care), or sensor-augmented pump (SAP) therapy. The trial included a two- to eight-week run-in phase to train participants on study devices.
Pregnancies in type 1 diabetes are high risk, and data in the United States are limited regarding continuous glucose monitoring (CGM)-based hypoglycemia throughout pregnancy while on sensor-augmented insulin pump therapy. Pregnant women with type 1 diabetes in the LOIS-P Study (Longitudinal Observation of Insulin use and glucose Sensor metrics in Pregnant women with type 1 diabetes using continuous glucose monitors and insulin pumps) were enrolled before 17 weeks gestation at three U.S.
View Article and Find Full Text PDFEvaluating the feasibility of closed-loop insulin delivery with a zone model predictive control (zone-MPC) algorithm designed for pregnancy complicated by type 1 diabetes (T1D). Pregnant women with T1D from 14 to 32 weeks gestation already using continuous glucose monitor (CGM) augmented pump therapy were enrolled in a 2-day multicenter supervised outpatient study evaluating pregnancy-specific zone-MPC based closed-loop control (CLC) with the interoperable artificial pancreas system (iAPS) running on an unlocked smartphone. Meals and activities were unrestricted.
View Article and Find Full Text PDFObjective: Achieving optimal glycemic control for many individuals with type 1 diabetes (T1D) remains challenging, even with the advent of newer management tools, including continuous glucose monitoring (CGM). Modern management of T1D generates a wealth of data; however, use of these data to optimize glycemic control remains limited. We evaluated the impact of a CGM-based decision support system (DSS) in patients with T1D using multiple daily injections (MDI).
View Article and Find Full Text PDFSuboptimal glycemic control is associated with maternal and neonatal morbidity and mortality in pregnancy complicated by type 1 diabetes (T1D). Prospective analysis of continuous glucose monitoring (CGM) metrics, insulin pump settings, and insulin delivery can better characterize the changes in glycemic levels and insulin use throughout pregnancy with T1D. Prescribed parameters, insulin delivery, carbohydrate intake, and CGM data for 25 pregnant women with T1D from three U.
View Article and Find Full Text PDFThe aim of this study was to determine the performance of the Dexcom G6 continuous glucose monitoring (CGM) system across three sensor wear sites in pregnant women with diabetes in the second or third trimesters. Participants with type 1 (T1D), type 2 (T2D), or gestational (GDM) diabetes mellitus were enrolled at three sites. Each wore two G6 sensors on the abdomen, upper buttock, and/or posterior upper arm for 10 days and underwent a 6-h clinic session between days 3 and 7 of sensor wear, during which YSI reference blood glucose values were obtained every 30 min.
View Article and Find Full Text PDFBackground: Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting.
View Article and Find Full Text PDFDiabetes Technol Ther
September 2017
Objective: A fully closed-loop insulin-only system was developed to provide glucose control in patients with type 1 diabetes without requiring announcement of meals or activity. Our goal was to assess initial safety and efficacy of this system.
Research Design And Methods: The multiple model probabilistic controller (MMPPC) anticipates meals when the patient is awake.