Publications by authors named "Camilla G Boer"

Background And Purpose: Image-guided proton beam therapy (IG-PBT) and cone-beam CT (CBCT)-based online adaptive photon radiotherapy (oART) have potentials to restrict radiation toxicity. They are both hypothesised to reduce therapy limiting bowel toxicity in the multimodality treatment of locally advanced rectal cancer (LARC). This study aimed to quantify the difference in relevant dose-volume metrics for these modalities.

View Article and Find Full Text PDF

Background: Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs).

View Article and Find Full Text PDF

. While integration of variable relative biological effectiveness (RBE) has not reached full clinical implementation, the importance of having the ability to recalculate proton treatment plans in a flexible, dedicated Monte Carlo (MC) code cannot be understated . Here we provide a step-wise method for calibrating dose from a MC code to a treatment planning system (TPS), to obtain required parameters for calculating linear energy transfer (LET), variable RBE and in general enabling clinical realistic research studies beyond the capabilities of a TPS.

View Article and Find Full Text PDF

Introduction: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia.

View Article and Find Full Text PDF

Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT).

View Article and Find Full Text PDF

Introduction: The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia.

Methods: The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET).

View Article and Find Full Text PDF
Article Synopsis
  • Children with brain tumors are often treated with proton therapy (PT) to minimize radiation damage to healthy tissues, compared to traditional photon-based therapy (VMAT).
  • A study analyzed 40 pediatric patients, comparing their PT plans to re-planned VMAT, focusing on dose to critical organs and assessing risks of complications using NTCP models.
  • Results showed that PT significantly reduced radiation exposure and complications like auditory toxicity, neurocognitive decline, and risks of secondary cancers, benefiting most patients compared to VMAT.
View Article and Find Full Text PDF