Background: Salt tolerance in plants is rare, yet it is found across a diverse set of taxonomic groups. This suggests that, although salt tolerance often involves a set of complex traits, it has evolved many times independently in different angiosperm lineages. However, the pattern of evolution of salt tolerance can vary dramatically between families.
View Article and Find Full Text PDFBackground And Aims: Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses.
View Article and Find Full Text PDFStudies of domesticated animals have led to the suggestion that domestication could have significant effects on patterns of molecular evolution. In particular, analyses of mitochondrial genome sequences from domestic dogs and yaks have yielded higher ratios of non-synonymous to synonymous substitutions in the domesticated lineages than in their wild relatives. These results are important because they imply that changes to selection or population size operating over a short timescale can cause significant changes to the patterns of mitochondrial molecular evolution.
View Article and Find Full Text PDFLateralization of the brain has traditionally been considered a specialization that is confined to the vertebrates, but recent studies have revealed that a range of invertebrates also have a brain that is structurally asymmetric and/or each side performs a different set of functions. Here, we show that the precopulatory mating behaviour of the pond snail Lymnaea stagnalis is lateralized. We present evidence that the asymmetry of the behaviour corresponds to the sinistral or dextral shell coil, or chirality, of the snail, and is apparently also controlled by a maternal effect locus.
View Article and Find Full Text PDF