Amyloids are cytotoxic protein aggregates that deposit in human tissues, leading to several health disorders. Their aggregates can also exhibit catalytic properties, and they have been used as candidates for the development of functional biomaterials. Despite being polymorphic, amyloids often assemble as cross-β fibrils formed by in-register β sheet layers.
View Article and Find Full Text PDFPDE3s belong to the phosphodiesterases family, where the PDE3A isoform is the major subtype in platelets involved in the cAMP regulation pathway of platelet aggregation. PDE3A inhibitors have been designed as potential antiplatelet agents. In this work, a homology model of PDE3A was developed and used to obtain the binding modes of bicyclic heteroaromatic pyridazinones and pyrazolones.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor with an important role in lipid metabolism, inflammation and cardiovascular diseases. PPARγ ligands have inhibitory effects on platelet aggregation via the cAMP pathway, which may confer them a protective cardioprotective role. Edaglitazone and Ciglitazone are two chemically-similar thiazolidinedione (TZD) drugs that have been described as potent PPARγ agonists; however, Edaglitazone is over 100 times more potent than Ciglitazone.
View Article and Find Full Text PDFWe have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation).
View Article and Find Full Text PDFA conformational selection method, based on hydrogen bond (Hbond) network analysis, has been designed in order to rationalize the configurations sampled using molecular dynamics (MD), which are commonly used in the estimation of the relative binding free energy of ligands to macromolecules through the MM/GBSA or MM/PBSA method. This approach makes use of protein-ligand complexes obtained from X-ray crystallographic data, as well as from molecular docking calculations. The combination of several computational approaches, like long MD simulations on protein-ligand complexes, Hbond network-based selection by scripting techniques and finally MM/GBSA, provides better statistical correlations against experimental binding data than previous similar reported studies.
View Article and Find Full Text PDF