Tuberculosis (TB) is an infectious disease that annually affects millions of people, and resistance to available antibiotics has exacerbated this situation. Another notable characteristic of Mycobacterium tuberculosis, the primary causative agent of TB, is its ability to survive inside macrophages, a key component of the immune system. In our quest for an effective and safe treatment that facilitates the targeted delivery of antibiotics to the site of infection, we have proposed a nanotechnology approach based on an iron chelator.
View Article and Find Full Text PDFSince 1966, rifampicin (RIF) has been considered one of the most potent drugs in the treatment of tuberculosis (TB), which is caused by infection with M. tuberculosis (Mtb). New nanostructured formulations for RIF delivery and alternative routes of administration have been studied as potential forms of treatment.
View Article and Find Full Text PDFAn exploration of the chemical space around a 2,5-dimethylpyrrole scaffold of antitubercular hit compound 1 has led to the identification of new derivatives active against Mycobacterium tuberculosis and multidrug-resistant clinical isolates. Analogues incorporating a cyclohexanemethyl group on the methyleneamine side chain at C3 of the pyrrole core, including 5n and 5q, exhibited potent inhibitory effects against the M. tuberculosis strains, substantiating the essentiality of the moiety to their antimycobacterial activity.
View Article and Find Full Text PDFAntibiotic resistance is one of the biggest threats to global health, and this study aimed better understand how the efflux pumps are related to this process in tuberculosis clinical isolates. The combination of antibiotics plus efflux pumps (EP) inhibitors was able to restore the susceptibility of clinical isolates in 100% of aminoglycosides resistance and 33.3% of the fluoroquinolones resistance.
View Article and Find Full Text PDFA series of indolyl-3-methyleneamines incorporating lipophilic side chains were designed through a structural rigidification approach and synthesized for investigation as new chemical entities against (Mtb). The screening led to the identification of a 6-chloroindole analogue bearing an -octyl chain and a cycloheptyl moiety, which displayed potent activity against laboratory and clinical Mtb strains, including a pre-extensively drug-resistant (pre-XDR) isolate. also demonstrated a marked ability to restrict the intracellular growth of Mtb in murine macrophages.
View Article and Find Full Text PDFA series of -phenyl-2,5-dimethylpyrrole derivatives, designed as hybrids of the antitubercular agents BM212 and SQ109, have been synthesized and evaluated against susceptible and drug-resistant mycobacteria strains. Compound , bearing a cyclohexylmethylene side chain, showed high potency against including MDR-TB strains at submicromolar concentrations. The new compound shows bacteriostatic activity and low toxicity and proved to be effective against intracellular mycobacteria too, showing an activity profile similar to isoniazid.
View Article and Find Full Text PDFThe indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority.
View Article and Find Full Text PDFIdentification of new antibiotics suitable for the treatment of tuberculosis is required. In addition to selectivity, it is necessary to find new antibiotics that are effective when the tuberculous mycobacteria are resistant to the available therapies. The furo[2,3-b]pyridine core offers potential for this application.
View Article and Find Full Text PDFTuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the infectious disease responsible for the highest number of deaths worldwide. Herein, 22 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antitubercular potential against Mtb. Compound 8 was found to be the most promising compound, with MIC values of 1.
View Article and Find Full Text PDFTuberculosis, an infectious disease, has caused more deaths worldwide than any other single infectious disease, killing more than 1.5 million people each year; equating to 4,100 deaths a day. In the past 60 years, no new drugs have been added to the first line regimen, in spite of the fact that thousands of papers have been published on drugs against tuberculosis and hundreds of drugs have received patents as new potential products.
View Article and Find Full Text PDFIn search of prospective agents against infectious diseases, 1,1'-bis(diphenylphosphino)ferrocene pyridine-2-thiolato-1-oxide M(ii) hexafluorophosphate compounds [M(mpo)(dppf)](PF6), where M = palladium or platinum, were synthesized and fully characterized in the solid state and in solution using experimental and DFT computational techniques. The compounds are isomorphous and the M(ii) transition metal ions are in a nearly planar trapezoidal cis-coordination bound to the pyridine-2-thiolato-1-oxide (mpo) and to the 1,1'-bis(diphenylphosphino)ferrocene molecules, both acting as bidentate ligands. Both compounds showed high cytotoxic activity on Trypanosoma cruzi and Mycobacterium tuberculosis (MTB) and acceptable selectivities towards MTB, but good to excellent selectivity index values as anti-T.
View Article and Find Full Text PDF