Publications by authors named "Camila Mafla"

Conventional technology for the modification of surfaces loaded with nanomaterials typically requires a three-step process: (1) the construction of a polymer platform, (2) the synthesis of nanoparticles (NPs), and (3) the immobilization or anchoring of NPs. During the immobilization or anchoring process, there is an unavoidable excess of NPs primarily situated at the top of the surface, resulting in the agglomeration of aggregates. These aggregates can form different shapes and sizes, often creating an uneven distribution of NPs, resulting in an unstable coating that gradually releases NPs over time.

View Article and Find Full Text PDF

The synthesis of copper nanoparticles (CuNPs) was accomplished by using a rapid, green, and versatile argon plasma reduction method that involves solvent extraction. With this method, a plasma-solid state interaction forms and CuNPs can be synthesized from copper(II) sulfate using a low-pressure, low-temperature argon plasma. Characterization studies of the CuNPs revealed that when a metal precursor is treated under optimal experimental conditions of 80 W of argon plasma for 300 s, brown CuNPs are synthesized.

View Article and Find Full Text PDF