The application of mesenchymal stem cells (MSC) in bone tissue regeneration can have unpredictable results due to the low survival of cells in the process since the lack of oxygen and nutrients promotes metabolic stress. Therefore, in this work, polymeric membranes formed by organic-inorganic hybrid materials called ureasil-polyether for modified glucose release were developed in order to overcome the problems posed by a of lack of this nutrient. Thus, membranes formed by polymeric blend of polypropylene oxide (PPO4000) and polyethylene oxide (PEO500) with 6% glucose incorporation were developed.
View Article and Find Full Text PDFPhysical barrier membranes have been used to release active substances to treat critical bone defects; however, hydrophilic membranes do not present a prolonged release capacity. In this sense, hydrophobic membranes have been tested. Thus, this study aimed to develop hydrophobic membranes based on mixtures of ureasil-polyether-type materials containing incorporated dexamethasone (DMA) for the application in guided bone regeneration.
View Article and Find Full Text PDFGuided bone regeneration (GBR) technique helps to restore bone tissue through cellular selectivity principle. Currently no osteoinductive membrane exists on the market. Osteogenic growth peptide (OGP) acts as a hematopoietic stimulator.
View Article and Find Full Text PDF