Publications by authors named "Camila Esguerra"

DHPS deficiency syndrome is an ultra-rare neurodevelopmental disorder (NDD) which results from biallelic mutations in the gene encoding the enzyme deoxyhypusine synthase (DHPS). DHPS is essential to synthesize hypusine, a rare amino acid formed by post-translational modification of a conserved lysine in eukaryotic initiation factor 5 A (eIF5A). DHPS deficiency syndrome causes epilepsy, cognitive and motor impairments, and mild facial dysmorphology.

View Article and Find Full Text PDF

CHD2-related epilepsy is characterized by early-onset photosensitive myoclonic epilepsy with developmental delay and a high rate of pharmacoresistance. We sought to evaluate the efficacy of acetazolamide (ACZ) in CHD2-related epilepsy, due to ACZ's unexpected efficacy in our first patient harboring a pathogenic CHD2 variant. We collected patients from different Eastern European countries with drug-resistant CHD2-related epilepsy who were then treated with ACZ.

View Article and Find Full Text PDF

Objective: Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates palmatine (PALM), an alkaloid from Berberis sibrica, for its anticonvulsant properties using zebrafish and mouse seizure models, confirming its efficacy in several tests.
  • Immunostaining and molecular modeling suggest PALM's anticonvulsant effects might be linked to interactions with glutamic acid decarboxylase and AMPA receptors.
  • Though PALM shows potential as a new drug candidate for seizures, further research is needed to clarify its mechanisms and effects on different seizure types.
View Article and Find Full Text PDF

Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities.

View Article and Find Full Text PDF

Background: The etiology of autism spectrum disorder (ASD) is multifactorial, involving genetic and environmental contributors such as endocrine-disrupting chemicals (EDCs).

Objective: To evaluate the association between perinatal exposure to 27 potential EDCs and ASD among Norwegian children, and to further examine the neurodevelopmental toxicity of associated chemicals using zebrafish embryos and larvae.

Method: 1,199 mothers enrolled in the prospective birth-cohort (HUMIS, 2002-2009) study.

View Article and Find Full Text PDF

The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity.

View Article and Find Full Text PDF
Article Synopsis
  • - Epilepsy affects about 1% of the population, yet around 30% of patients suffer from drug-resistant epilepsy (DRE), making it a key area for medical research despite more than 25 available anti-seizure medications.
  • - This review explores new epilepsy treatments derived from natural products (NPs), like cannabidiol (CBD) and rapamycin, including their potential roles as adjunct therapies for patients with DRE.
  • - The findings include insights on the effectiveness of various plant-based medicines and their ability to activate the vagus nerve, offering a new direction for treating challenging cases of epilepsy.
View Article and Find Full Text PDF

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39.

View Article and Find Full Text PDF

Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs.

View Article and Find Full Text PDF

[] showed broad-spectrum antiseizure activity across mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations.

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry.

View Article and Find Full Text PDF

PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer.

View Article and Find Full Text PDF

is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish.

View Article and Find Full Text PDF

Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis.

View Article and Find Full Text PDF

While there is an abundance of commercial and standardized automated systems and software for performing the prepulse inhibition (PPI) assay in rodents, to the best of our knowledge, all PPI assays performed in the zebrafish have, until now, been done using custom made systems which were only available to individual groups. This has thereby presented challenges, particularly with regard to issues of data reproducibility and standardization. In the present work, we generated a protocol that utilizes commercially available automated systems to pharmacologically validate the PPI assay in larval zebrafish.

View Article and Find Full Text PDF

Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom.

View Article and Find Full Text PDF

Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound.

View Article and Find Full Text PDF

Objective: To pinpoint the earliest cellular defects underlying seizure onset (epileptogenic period) during perinatal brain development in a new zebrafish model of Dravet syndrome (DS) and to investigate potential disease-modifying activity of the 5HT receptor agonist fenfluramine.

Methods: We used CRISPR/Cas9 mutagenesis to introduce a missense mutation, designed to perturb ion transport function in all channel isoforms, into scn1lab, the zebrafish orthologue of SCN1A (encoding voltage-gated sodium channel alpha subunit 1). We performed behavioral analysis and electroencephalographic recordings to measure convulsions and epileptiform discharges, followed by single-cell RNA-Seq, morphometric analysis of transgenic reporter-labeled γ-aminobutyric acidergic (GABAergic) neurons, and pharmacological profiling of mutant larvae.

View Article and Find Full Text PDF

The CACNA1A gene encodes the pore-forming α1 subunit of voltage-gated P/Q type Ca channels (Ca2.1). Mutations in this gene, among others, have been described in patients and rodents suffering from absence seizures and episodic ataxia type 2 with/without concomitant seizures.

View Article and Find Full Text PDF

Climate change is the biggest challenge facing humanity today. The associated global warming and humidification, increases in the severity and frequency of extreme climate events, extension of the ranges of vector-borne diseases, and the consequent social and economic stresses and disruption will have major negative consequences on many aspects of health care. People whose resilience to change is already impaired may suffer disproportionately from these environmental changes, which are of unprecedented reach and magnitude.

View Article and Find Full Text PDF

There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively.

View Article and Find Full Text PDF

In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice.

View Article and Find Full Text PDF

Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia.

View Article and Find Full Text PDF

The clearance of damaged or dysfunctional mitochondria by selective autophagy (mitophagy) is important for cellular homeostasis and prevention of disease. Our understanding of the mitochondrial signals that trigger their recognition and targeting by mitophagy is limited. Here, we show that the mitochondrial matrix proteins 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and NIPSNAP2 accumulate on the mitochondria surface upon mitochondrial depolarization.

View Article and Find Full Text PDF