In this work, α-AgCuWO (0 ≤ ≤ 0.16) solid solutions with enhanced antibacterial (against methicillin-resistant ) and antifungal (against ) activities are reported. A plethora of techniques (X-ray diffraction with Rietveld refinements, inductively coupled plasma atomic emission spectrometry, micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence emissions, and X-ray photoelectron spectroscopy) were employed to characterize the as-synthetized samples and determine the local coordination geometry of Cu cations at the orthorhombic lattice.
View Article and Find Full Text PDFThis study demonstrates that the electron beam irradiation of materials, typically used in characterization measurements, could be employed for advanced fabrication, modification, and functionalization of composites. We developed irradiation equipment using an electron beam irradiation source to be applied in materials modification. Using this equipment, the formation of a thick Ag film on the AgPO semiconductor is carried out by electron beam irradiation for the first time.
View Article and Find Full Text PDFThe number of studies on microcrystals containing silver has increased in recent decades. Among the silver-containing microcrystals, α-AgVO has gained prominence owing to its polymorphism that allows it to exert interesting antimicrobial activity against pathogenic microorganisms. The aim of this study was to evaluate the antifungal activity and cytotoxicity of three different α-AgVO microcrystals when in solution.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2018
Silver tungstate (α-AgWO) microcrystals have shown encouraging results regarding their antimicrobial activity. However, in addition to the promising outcomes in fighting oral disease, cytotoxic tests are mandatory for screening new materials for biological applications. Here, we developed a better understanding of the effects of microcrystals on the behavior of both human gingival fibroblast (HGF) cells and three-dimensional (3D) collagen matrices.
View Article and Find Full Text PDFPurpose: To investigate the influence of surface characteristics and saliva on the adhesion and biofilm formation of Candida glabrata and methicillin-resistant Staphylococcus aureus (MRSA) to soft liners and tissue conditioners.
Methods: For each material (Ufi Gel P - UG; Sofreliner S - SS; Trusoft - TR; Coe Comfort - CC; Softone - ST), specimens were prepared and roughness (Ra), hydrophobicity (water contact angles-WCA) and surface free energy (SFE) were measured. Surface morphology was also analyzed using scanning electron microscopy (SEM).
The electronic configuration, morphology, optical features, and antibacterial activity of metastable α-AgVO crystals have been discussed by a conciliation and association of the results acquired by experimental procedures and first-principles calculations. The α-AgVO powders were synthesized using a coprecipitation method at 10, 20, and 30 °C. By using a Wulff construction for all relevant low-index surfaces [(100), (010), (001), (110), (011), (101), and (111)], the fine-tuning of the desired morphologies can be achieved by controlling the values of the surface energies, thereby lending a microscopic understanding to the experimental results.
View Article and Find Full Text PDF