Publications by authors named "Camila Castro Moreno"

Machine Learning studies often involve a series of computational experiments in which the predictive performance of multiple models are compared across one or more datasets. The results obtained are usually summarized through average statistics, either in numeric tables or simple plots. Such approaches fail to reveal interesting subtleties about algorithmic performance, including which observations an algorithm may find easy or hard to classify, and also which observations within a dataset may present unique challenges.

View Article and Find Full Text PDF