Publications by authors named "Camila B Mendes-Silverio"

Introduction: Tumor necrosis factor-alpha (TNF-α) exerts a critical role in inflammatory events through two distinct receptors, TNFR1 and TNFR2. Platelets have been recognized as important inflammatory cells, but little is known about the effects of TNF-α on the platelet activity.

Objectives: In the present study we have studied the role of TNF-α on ADP-induced platelet aggregation and its downstream signaling (c-Src and fibrinogen receptor phosphorylation, cytosolic Ca mobilization, cAMP and cGMP levels and cell viability).

View Article and Find Full Text PDF

is a medicinal plant of the Brazilian Cerrado. Different parts of its fruits are used in popular medicine to treat gastrointestinal disorders, rheumatism, urinary tract infections and inflammations. Despite its widespread use by the local population, the mechanisms involving platelet aggregation and the inhibition of cyclooxygenase by are unknown.

View Article and Find Full Text PDF

Mirabegron is a β-adrenoceptor agonist and released on the marked for the treatment of overactive bladder. Because mirabegron is the only β-adrenoceptor agonist available and substances that increase the levels of cyclic adenosine monophosphate (cAMP) inhibit platelet activity, we tested the hypothesis that mirabegron could have antiplatelet activity. Collagen- and thrombin induced platelet aggregation, thromboxane B2 (TXB) and cyclic nucleotides quantification and calcium (Ca) mobilization were determined in the absence and presence of mirabegron in human washed platelets.

View Article and Find Full Text PDF

The intracellular levels of cyclic GMP are controlled by its rate of formation through nitric oxide-mediated stimulation of soluble guanylate cyclase (sGC) and its degradation by phosphodiesterases. Multidrug resistance protein 4 (MRP4) expressed in human platelets pumps cyclic nucleotides out of cells. In search for new antiplatelet strategies, we tested the hypothesis that sGC activation concomitant with MRP4 inhibition confers higher antiplatelet efficacy compared with monotherapy alone.

View Article and Find Full Text PDF

Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4-(trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity.

View Article and Find Full Text PDF

Background And Aims: Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested.

View Article and Find Full Text PDF