Complement activation is key to anti-microbial defenses by directly acting on microbes and indirectly by triggering cellular immune responses. Complement activation may also contribute to the pathogenesis of numerous inflammatory and immunological diseases. Consequently, intense research focuses on developing therapeutics that block pathology-causing complement activation while preserving anti-microbial complement activities.
View Article and Find Full Text PDFWe describe a novel method of characterizing protein-RNA interactions using a fluorescence-based multiwell capillary electrophoresis platform based on microfluidic technology. As a proof of concept, we studied the binding of human immunodeficiency virus 1 (HIV-1) transactivator of transcription (Tat) to the transactivation-responsive RNA (TAR). We established conditions to quantify the binding of recombinant HIV-1 Tat to TAR RNA and validated the assay by demonstrating the dependence of this interaction on the presence of the UCU bulge in TAR.
View Article and Find Full Text PDFActivated mature B cells in which the DNA-binding activity of E-proteins has been disrupted fail to undergo class switch recombination. Here we show that activated B cells overexpressing the antagonist helix-loop-helix protein Id3 do not induce expression of the murine Aicda gene encoding activation-induced deaminase (AID). A highly conserved intronic regulatory element in Aicda binds E-proteins both in vitro and in vivo.
View Article and Find Full Text PDF