Publications by authors named "Cameron W McLeod"

Convection enhanced delivery (CED) is a method of direct injection to the brain that can achieve widespread dispersal of therapeutics, including gene therapies, from a single dose. Non-viral, nanocomplexes are of interest as vectors for gene therapy in the brain, but it is essential that administration should achieve maximal dispersal to minimise the number of injections required. We hypothesised that anionic nanocomplexes administered by CED should disperse more widely in rat brains than cationics of similar size, which bind electrostatically to cell-surface anionic moieties such as proteoglycans, limiting their spread.

View Article and Find Full Text PDF

Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency.

View Article and Find Full Text PDF

We describe a hybrid transcriptomic and modelling analysis of the dynamics of a bacterial response to stress, namely the addition of 200 µM Zn to Escherichia coli growing in severely Zn-depleted medium and of cells growing at different Zn concentrations at steady state. Genes that changed significantly in response to the transition were those reported previously to be associated with zinc deficiency (zinT, znuA, ykgM) or excess (basR, cpxP, cusF). Cellular Zn levels were confirmed by ICP-AES to be 14- to 28-fold greater after Zn addition but there was also 6- to 8-fold more cellular Fe 30 min after Zn addition.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a valuable tool for the analysis of molecules directly from tissue. Imaging of phospholipids is gaining widespread interest, particularly as these lipids have been implicated in a variety of pathologic processes. Formalin fixation (FF) is the standard protocol used in histology laboratories worldwide to preserve tissue for analysis, in order to aid in the diagnosis and prognosis of diseases.

View Article and Find Full Text PDF

Colchicine, a known tubulin binding agent and vascular disrupting agent, causes rapid vascular shut down and central necrosis in tumors. The binding of tubulin results in tubulin destabilization, with characteristic cell shape changes and inhibition of cell division, and results in cell death. A gadolinium(III) labeled derivative of colchicine (Gd·DOTA·Colchicinic acid) was synthesized and characterized as a theranostic agent (enabling simultaneous diagnostic/real time MRI contrast imaging).

View Article and Find Full Text PDF

Manganese-enhanced magnetic resonance imaging (MEMRI) is a novel imaging technique capable of monitoring calcium influx, in vivo. Manganese (Mn2+) ions, similar to calcium ions (Ca2+), are taken up by activated cells where their paramagnetic properties afford signal enhancement in T(1)-weighted MRI methodologies. In this study we have assessed Mn2+ distribution in mice using magnetization-prepared rapid gradient echo (MP-RAGE) based MRI, by measuring changes in T(1)-effective relaxation times (T(1)-eff), effective R(1)-relaxation rates (R(1)-eff) and signal intensity (SI) profiles over time.

View Article and Find Full Text PDF

Purpose: This study aims to develop a low molecular weight folate receptor (FR) contrast agent for MR tumor imaging.

Procedures: Gadolinium-tetraazacyclododecane tetraacetic acid (Gd.DOTA) was conjugated to folic acid to create Gd.

View Article and Find Full Text PDF

Purpose: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized in postmortem imaging of gadolinium (Gd) spatial distribution in a mouse tumor model postadministration of PEGylated Gd liposomal nanoparticles.

Procedures: PEGylated liposomal nanoparticles were formulated using a paramagnetic lipid incorporating Gd, in addition to a fluorescent lipid, and injected intravenously into Balb/C nude mice bearing IGROV-1 tumors. At postinjection (2 h), the tumors and selective organs were imaged by magnetic resonance imaging (MRI) and, after excision, by histology and LA-ICP-MS.

View Article and Find Full Text PDF

Bacterial colonies are spatially complex structures whose physiology is profoundly dependent on interactions between cells and with the underlying semi-solid substratum. Here, we use bacterial colonies as a model of a microbial community to evaluate the potential of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to delineate elemental distributions within colonies with minimal pre-treatment. To reduce water content of the colony and limit undesirable absorption of laser energy, we compared methods of preparing 24h-old colonies of Escherichia coli TG1 on agar for laser ablation.

View Article and Find Full Text PDF

Zinc ions play indispensable roles in biological chemistry. However, bacteria have an impressive ability to acquire Zn(2+) from the environment, making it exceptionally difficult to achieve Zn(2+) deficiency, and so a comprehensive understanding of the importance of Zn(2+) has not been attained. Reduction of the Zn(2+) content of Escherichia coli growth medium to 60 nm or less is reported here for the first time, without recourse to chelators of poor specificity.

View Article and Find Full Text PDF

To characterise the water-soluble inorganic components of PM(10) in the urban area of Sheffield, size-resolved aerosol samples were collected using an electric low pressure impactor (ELPI) during a 13-day sampling campaign in October and November 2006. Cl(-), NO(3)(-), SO(4)(2-), and NH(4)(+) were determined by ion chromatography, and Na(+), K(+), Mg(2+), and Ca(2+) by inductively coupled plasma-mass spectrometry. Back trajectories analyses revealed that the air masses could be classified into two main groups.

View Article and Find Full Text PDF

Carbon monoxide, a classical respiratory inhibitor, also exerts vasodilatory, anti-inflammatory, and antiapoptotic effects. CO-releasing molecules have therapeutic value, increasing phagocytosis and reducing sepsis-induced lethality. Here we identify for the first time the bacterial targets of Ru(CO)(3)Cl(glycinate) (CORM-3), a ruthenium-based carbonyl that liberates CO rapidly under physiological conditions.

View Article and Find Full Text PDF

Escherichia coli possesses two major systems for inorganic phosphate (P(i)) uptake. The Pst system (pstSCAB) is inducible by low phosphate concentrations whereas the low-affinity transporter (pitA) has been described as constitutively expressed. PitA catalyses transport of metal [Mg(II), Ca(II)]-phosphate complexes, and mutations in pitA confer Zn(II) resistance.

View Article and Find Full Text PDF

A new environmental certified reference material (CRM) for the determination of multielements in aerosol particulate matter has been developed and certified by the National Institute for Environmental Studies (NIES), Japan, based on analyses by a network of laboratories using a wide range of methods. The origin of the material was atmospheric particulate matter collected on filters in a central ventilating system in a building in Beijing city centre. The homogeneity and stability of this material were sufficient for its use as a reference material.

View Article and Find Full Text PDF

Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 microm (PM(10)) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m(-3), respectively) were relatively high compared to what is reported elsewhere.

View Article and Find Full Text PDF

Stroke is a major cause of death and disability. About 5.3 million people die every year from stroke worldwide with over 9 million people surviving at any one time after suffering a stroke.

View Article and Find Full Text PDF

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has been developed as a new strategy for detection and imaging of beta-amyloid protein in immunohistochemical sections from the brains of a transgenic mouse model of Alzheimer's disease. The distribution of beta-amyloid deposits in tissue was based on measurement of Eu- and Ni-coupled antibodies. The laser-based methodologies (spot ablation, single line raster, and two-dimensional imaging) were also used to detect and map trace element distributions and thus provide a novel probe for both elemental and protein data.

View Article and Find Full Text PDF

The potential for developing improved procedures for phosphate measurement through combinations of gel electrophoresis and quadrupole-based ICP mass spectrometry utilising (47)PO(+) is investigated. Laser ablation of gels offers a rapid and direct quantitation route, but is subject to high blanks due to P impurities in gels and associated reagents; nevertheless optimisation of laser sampling afforded improved method sensitivity (limit of detection 0.09 microg g(-1)).

View Article and Find Full Text PDF

The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection.

View Article and Find Full Text PDF

ICP-MS analysis of the bark pockets and annual rings of two beech (Fagus sylvatica L.) trees collected from Longshaw, Derbyshire and Swinton, South Yorkshire in the UK recorded differences in the (206)Pb/(207)Pb isotope ratio. In the Longshaw sample, the (206)Pb/(207)Pb isotope ratio of the bark pockets ( approximately 1914-1998, 78-260 microg g(-1) Pb) declined from approximately 1.

View Article and Find Full Text PDF

ICP-MS analysis recorded historical change (c. 1846 to 2002) in the arsenic concentration of bark included within the trunks (tree bark pockets) of two Japanese oak trees (Quercus crispula), collected at an elevated location approximately 10 km from the Ashio copper mine and smelter, Japan. The arsenic concentration of the bark pockets was 0.

View Article and Find Full Text PDF

Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between d-fructose 6-phosphate and d-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-A resolution. Structural comparison of this archaeal PGI with the previously solved structures of bacterial and eukaryotic PGIs reveals a completely different structure.

View Article and Find Full Text PDF

Metals bound to proteins play key roles in structure stabilization, catalysis, and metal transport in cells, but metals may also be toxic. As a consequence, cells have developed mechanisms to control metal concentrations through binding to proteins. We have used a hyphenated strategy linking gel electrophoresis with laser ablation-inductively coupled plasma-mass spectrometry in order to detect, map, and quantify metal-binding proteins synthesized in Escherichia coli under zinc- and cadmium-stress conditions.

View Article and Find Full Text PDF

The annual growth rings and bark pockets of a 250-year-old Japanese oak (Quercus crispula), collected from the Nikko National Park, Japan in 2000 AD, were analysed by ICP mass spectrometry. The annual rings, sampled in 5-year increments, recorded Pb concentrations from 0.01 to 0.

View Article and Find Full Text PDF