In the present study, the effect of graphite lubricant additives on the dynamics of a single drop impact onto a heated surface has been investigated in the nucleate boiling and thermal atomization regimes. In the nucleate boiling regime the drop impact is accompanied by the nucleation and expansion of multiple vapor bubbles. The drop residence time at the substrate is determined by the time of its mass loss due to splash and evaporation.
View Article and Find Full Text PDFAccurate quantification of scattering angle versus detector pixel strongly determines the measurement accuracy of rainbow refractometry. This is an emerging measurement technique operating at backscatter angles and characterizing droplets or complex droplets in terms of size and refractive index. A novel method for calibration of the rainbow scattering angle using a monodisperse droplet stream is introduced and the achievable accuracy is estimated.
View Article and Find Full Text PDFIcing affects many technical systems, like aircraft or high-voltage power transmission and distribution in cold regions. Ice accretion is often initiated by ice nucleation in sessile supercooled water droplets and is influenced by several influencing factors, of which the impact of electric fields on ice nucleation is still not completely understood. Especially the influence of transient electric fields is rarely or not at all investigated, even though it is of great interest, e.
View Article and Find Full Text PDFRainbow refractometry has been used in the past to measure size and refractive index of spherical particles, typically droplets in a spray. In the present study, conventional optical configurations for point measurements or line measurements have been extended to allow also the particle position in a plane to be determined, and hence, the designation planar rainbow refractometry. However, this extension introduces challenges in accurately calibrating the 2D scattering angles with the image coordinates.
View Article and Find Full Text PDFThe present study examines the scattered light intensity from a drop passing through a Gaussian beam of a diameter comparable to or smaller than the drop. This is the situation encountered when using the time-shift technique, an optical technique used to characterize drops and aerosols according to the size and the velocity. In simulating the signals received by such an instrument, the computational effort involved when using, for instance, the Generalized Lorenz-Mie Theory or vector ray-tracing, is immense and hardly practical for use in instrument design and/or optimization.
View Article and Find Full Text PDFIcing is a severe problem for many technical systems such as aircraft or systems for high-voltage power transmission and distribution. Ice nucleation in water droplets is affected by several influencing factors like impurities or the liquid temperature, which have been widely investigated. However, although an electric field affects nucleation, this influence has been far less investigated and is still not completely understood.
View Article and Find Full Text PDFStrong electric fields may deform drops and induce their oscillation or motion on the substrate. Moreover, they can initiate partial discharges (PDs) because of the enhancement of the electric field in the vicinity of the three-phase contact lines. The partial discharges affect the drop spreading which can result in unusual drop shapes.
View Article and Find Full Text PDFA vector ray-tracing model (VRT) has been developed to compute the optical caustics associated with the primary rainbow for an oblate spheroidal water drop illuminated by a Gaussian beam. By comparing the optical caustic structures (in terms of limiting rainbow and hyperbolic umbilic fringes) for a water drop with a Gaussian beam (GB) illumination with that for the same drop, but with parallel beam (PB) illumination, the influence of the Gaussian beam on the optical caustics is investigated. For a water drop with GB illumination and different drop/beam ratios (i.
View Article and Find Full Text PDFIEEE Trans Med Imaging
April 2021
Wall shear stress (WSS) has been suggested as a potential biomarker in various cardiovascular diseases and it can be estimated from phase-contrast Magnetic Resonance Imaging (PC-MRI) velocity measurements. We present a parametric sequential method for MRI-based WSS quantification consisting of a geometry identification and a subsequent approximation of the velocity field. This work focuses on its validation, investigating well controlled high-resolution in vitro measurements of turbulent stationary flows and physiological pulsatile flows in phantoms.
View Article and Find Full Text PDFThe interaction of drops and electric fields occurs in many applications like electrowetting, electrospinning, atomization, but also causes unwanted effects like the aging of high-voltage composite insulators. Water drops are influenced by electric fields due to the polar properties of the water molecules. The behavior of the drops depends on several parameters like the orientation and strength of the electric field, drop volume, and frequency of the applied field.
View Article and Find Full Text PDFThis study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing multiple spherical inclusions. Such scattering scenarios arise when using the time-shift measurement technique for particle sizing.
View Article and Find Full Text PDFIn arterial blood flow wall shear stress (WSS) quantifies the frictional force that flowing blood exerts on a vessel wall. WSS can be directly estimated from phase-contrast (PC) MR velocity measurements and has been suggested as a biomarker in cardio-vascular diseases. We present and investigate the application of the Clauser plot method for estimating WSS in fully developed turbulent stationary flow using PC velocity measurements.
View Article and Find Full Text PDFA model is proposed to compute the salient optical caustic partitions occurring in the primary rainbow for oblate spheroidal drops. By computing the boundary limits of outgoing rays, the optical caustic structures (termed rainbow and hyperbolic umbilic fringes) for tilted drops are calculated and compared with those for aligned (untilted) drops. The curvature of the rainbow fringe and the shifts of cusp caustics are discussed as well.
View Article and Find Full Text PDFFluid movement in microfluidic devices, porous media, and textured surfaces involves coupled flows over the faces and corners of the media. Spontaneous wetting of simple grooved surfaces provides a model system to probe these flows. This numerical study investigates the spontaneous rise of a liquid in an array of open rectangular channels under gravity, using the Volume-of-Fluid method with adaptive mesh refinement.
View Article and Find Full Text PDFThe thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling.
View Article and Find Full Text PDFThe impact of water drops onto a solid surface at subfreezing temperatures has been experimentally studied. Drop nucleation has been observed using a high-speed video system. The statistics of nucleation allows the estimation of the average number of nucleation sites per unit area of the wetted part of the substrate.
View Article and Find Full Text PDFInterface Focus
February 2017
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures.
View Article and Find Full Text PDFAn experimental approach utilizing a Hele-Shaw cell for the investigation of the solidification of a supercooled liquid in contact with a solid wall is presented. The setup is based on an idea presented by Marín et al. [A.
View Article and Find Full Text PDFColloidal drops-suspensions, dispersions, emulsions-are widespread in the process industry but are difficult to characterize by size, velocity, and concentration of particulate matter in the drop. The present study investigates the use of the time-shift (TS) technique for such measurements. Numerically, a model based on ray tracing is developed, incorporating interactions with randomly placed monodispersed scattering centers within the spherical drop.
View Article and Find Full Text PDFIn this paper, a vector ray tracing (VRT) model is used to simulate optical caustic structures, including rainbow and hyperbolic umbilic (HU) fringes, in the tertiary rainbow region of light scattering from oblate spheroidal droplets. In order to apply the optical caustic structures to particle diagnostics, the evolution of rainbow and HU fringes with an increase in the aspect ratio of oblate spheroidal droplets is investigated in detail, and the curvature of rainbow fringes are calculated. Next, on the basis of the VRT model, the location of cusp caustics is calculated and compared with theoretical prediction.
View Article and Find Full Text PDFThe Möbius approximation for the primary rainbow and the Können approximation for the secondary rainbow have been modified to yield consistent predictions of the Möbius shift of the top and bottom rainbows, respectively. The applicability ranges of the Möbius and Können approximations are investigated by comparison to vector ray tracing (VRT) simulations. For the primary rainbow, these results indicate that the Möbius approximation is valid for spheroidal water droplets (m=1.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2015
In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2015
The drop, exposed to an air flow parallel to the substrate, starts to dislodge when the air velocity reaches some threshold value, which depends on the substrate wetting properties and drop volume. In this study the critical air velocity is measured for different drop volumes, on substrates of various wettabilities. The substrate initial temperatures varied between the normal room temperature (24.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2015
Drop splash as a result of an impact onto a dry substrate is governed by the impact parameters, gas properties and the substrate properties. The splash thresholds determine the boundaries between various splash modes. Various existing models for the splash threshold are reviewed in this paper.
View Article and Find Full Text PDF