Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains.
View Article and Find Full Text PDFGrasslands are globally abundant and provide many ecosystem services, including carbon (C) storage. While grasslands are widely subject to livestock grazing, the influence of grazing on grassland ecosystem C remains unclear. We studied the effect of long-term livestock grazing on C densities of different ecosystem components in 110 northern temperate grasslands across a broad agroclimatic gradient in Alberta, Canada.
View Article and Find Full Text PDFAgroforestry systems (AFS) contribute to carbon (C) sequestration and reduction in greenhouse gas emissions from agricultural lands. However, previously understudied differences among AFS may underestimate their climate change mitigation potential. In this 3-year field study, we assessed various C stocks and greenhouse gas emissions across two common AFS (hedgerows and shelterbelts) and their component land uses: perennial vegetated areas with and without trees (woodland and grassland, respectively), newly planted saplings in grassland, and adjacent annual cropland in central Alberta, Canada.
View Article and Find Full Text PDFSoil biota are critical drivers of plant growth, population dynamics, and community structure and thus have wide-ranging effects on ecosystem function. Interactions between plants and soil biota are complex, however, and can depend on the diversity and productivity of the plant community and environmental conditions. Plant-soil biota interactions may be especially important during stressful periods, such as drought, when plants can gain great benefits from beneficial biota but may be susceptible to antagonists.
View Article and Find Full Text PDFGrasslands are declining worldwide and are often impacted by industrial activities, including infrastructure development. Current best management practices for low-disturbance development on grasslands include the use of wooden access mats as temporary work platforms and roadways to mitigate soil compaction and rutting due to heavy traffic. We assessed the impacts of heavy traffic (TON), and the impacts of the same heavy equipment driven over top of access mats (AM), on soil physical, hydrological, and nutrient responses in sandy and loamy soils in the Dry Mixedgrass prairies over a 2-year period.
View Article and Find Full Text PDFApplying organic amendments to soil can increase soil organic carbon (SOC) storage and reduce greenhouse gas (GHG) emissions generated by agriculture, helping to mitigate climate change. However, it is necessary to determine which type of amendment produces the most desirable results. We conducted a 3-y field study comparing one-time addition of manure compost and its biochar derivative to a control to assess their effects on SOC and GHG emissions at ten annually cropped sites in central Alberta, Canada.
View Article and Find Full Text PDFAdaptive multi-paddock (AMP) grazing, a grazing system in which individual paddocks are grazed for a short duration at a high stock density and followed by a long rest period, is claimed to be an effective tool to sustainably manage and improve grasslands and enhance their ecosystem services. However, whether AMP grazing is superior to conventional grazing (n-AMP) in reducing soil greenhouse gas (GHG) emissions is unclear. Here, we measured CO, CH, and NO fluxes between August 2017 and August 2019 in 12 pairs of AMP vs.
View Article and Find Full Text PDFTheories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human-use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant-plant interactions and community assembly.
View Article and Find Full Text PDFLong-term livestock grazing (here after 'grazing') affects carbon (C) and nutrient cycling in grassland ecosystems, in part by altering the quantity and quality of litter inputs. Despite their spatial extent and size of carbon and nutrient stocks, the effect of grazing on grassland biogeochemical cycling through the mediation of microbial activity remains poorly understood. To better understand the relationship between grazing and C and nutrient cycling in litter, we conducted an 18-month long study in paired grasslands previously grazed and nongrazed by cattle for 25 years, measuring extracellular enzyme activity (EEA) in various plant litter samples.
View Article and Find Full Text PDFThe role of agroforestry systems in mitigating greenhouse gas (GHG) emission from agricultural soils during spring thaw (early April to mid-May) has been poorly studied. Soil CO, CH and NO fluxes were measured from treed areas and adjacent herblands (areas without trees) during spring thaw in 2014 and 2015 at 36 agroforestry sites (12 hedgerow, 12 shelterbelt and 12 silvopasture) in central Alberta, Canada. Fluxes of those GHGs varied with agroforestry systems and land-cover types.
View Article and Find Full Text PDFGrasslands cover more than 40% of the terrestrial surface of Earth and provide a range of ecological goods and services, including serving as one of the largest reservoirs for terrestrial carbon. An understanding of how livestock grazing, influences grassland soil organic carbon (SOC), including its concentration, vertical distribution and association among soil-particle sizes is unclear. We quantified SOC concentrations in the upper 30 cm of mineral soil, together with SOC particle-size association, within 108 pairs of long-term grazed and non-grazed grassland study sites spanning six distinct climate subregions across a 5.
View Article and Find Full Text PDFThe beef sector is working towards continually improving its sustainability in order to achieve environmentally, socially and economically desirable outcomes, all of which are of increasing concern to consumers. In this context, the Global Roundtable for Sustainable Beef (GRSB) provides guidance to advance the sustainability of the beef industry, through increased stakeholder engagement and the formation of national roundtables. Recently, the 2nd Global Conference on Sustainable Beef took place in Banff, Alberta, Canada, hosted by the GRSB and the Canadian Roundtable for Sustainable Beef.
View Article and Find Full Text PDFWestern Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014).
View Article and Find Full Text PDFTredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship.
View Article and Find Full Text PDFThe search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it.
View Article and Find Full Text PDFLand-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems.
View Article and Find Full Text PDFChanges in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient.
View Article and Find Full Text PDFUngulates impact woody species' growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e.
View Article and Find Full Text PDFThe immediate need to understand the complex responses of grasslands to climate change, to ensure food supplies and to mitigate future climate change through carbon sequestration, necessitate a global, synthesized approach. Numerous manipulative experiments have altered temperature or precipitation, often in conjunction with other interacting factors such as grazing, to understand potential effects of climate change on the ecological integrity of temperate grasslands and understand the mechanisms of change. Although the different ways in which temperature and precipitation may change to effect grasslands were well represented, variability in methodology limited generalizations.
View Article and Find Full Text PDFGrassland vegetation can provide visual cover for terrestrial vertebrates. The most commonly used method to assess visual cover is the Robel pole. We test the use of digital photography as a more accurate and repeatable method.
View Article and Find Full Text PDF