Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.
View Article and Find Full Text PDFThe stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H(HO)) based upon ionization energy and photoionization distance from source, suggesting there are "magic" numbers below the traditional = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.
View Article and Find Full Text PDFThe intensity ratio of the 11.2/3.3 μm emission bands is considered to be a reliable tracer of the size distribution of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM).
View Article and Find Full Text PDFThe characteristics of the CH stretching and out-of-plane bending modes in polycyclic aromatic hydrocarbon molecules are investigated using anharmonic density functional theory (DFT) coupled to a vibrational second-order perturbation treatment taking resonance effects into account. The results are used to calculate the infrared emission spectrum of vibrationally excited species in the collision-less environment of interstellar space. This model follows the energy cascade as the molecules relax after the absorption of a UV photon in order to calculate the detailed profiles of the infrared bands.
View Article and Find Full Text PDFPolyol-water clusters provide a template to probe ionization and solvation processes of paramount interest in atmospheric and interstellar chemistry. We generate glycerol water clusters in a continuous supersonic jet expansion and interrogate the neutral species with synchrotron-based tunable vacuum ultraviolet photoionization mass spectrometry. A series of glycerol fragments (/ 44, 61, 62, and 74) clustered with water are observed.
View Article and Find Full Text PDFThe profile of the 11.2 μm feature of the infrared (IR) cascade emission spectra of polycyclic aromatic hydrocarbon (PAH) molecules is investigated using a vibrational anharmonic method. Several factors are found to affect the profile including: the energy of the initially absorbed ultraviolet (UV) photon, the density of vibrational states, the anharmonic nature of the vibrational modes, the relative intensities of the vibrational modes, the rotational temperature of the molecule, and blending with nearby features.
View Article and Find Full Text PDFThe feasibility of the compression of localized virtual orbitals is explored in the context of intramolecular long-range dispersion interactions. Singular value decomposition (SVD) of coupled cluster doubles amplitudes associated with the dispersion interactions is analyzed for a number of long-chain systems, including saturated and unsaturated hydrocarbons and a silane chain. Further decomposition of the most important amplitudes obtained from these SVDs allows for the analysis of the dispersion-specific virtual orbitals that are naturally localized.
View Article and Find Full Text PDFThe infrared (IR) emission of polycyclic aromatic hydrocarbons (PAHs) permeates our universe; astronomers have detected the IR signatures of PAHs around many interstellar objects. The IR emission of interstellar PAHs differs from their emission as seen under conditions on Earth as they emit through a collisionless cascade down through their excited vibrational states from high internal energies. The difficulty in reproducing interstellar conditions in the laboratory results in a reliance on theoretical techniques.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) have been shown to be ubiquitous in a large variety of distinct astrophysical environments and are therefore of great interest to astronomers. The majority of these findings are based on theoretically predicted spectra, which make use of scaled DFT harmonic frequencies for band positions and the double harmonic approximation for intensities. However, these approximations have been shown to fail at predicting high-resolution gas-phase infrared spectra accurately, especially in the CH-stretching region (2950-3150 cm, 3 μm).
View Article and Find Full Text PDFThe study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results.
View Article and Find Full Text PDFCurrent efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction.
View Article and Find Full Text PDFA full derivation of the analytic transformation of the quadratic, cubic, and quartic force constants from normal coordinates to Cartesian coordinates is given. Previous attempts at this transformation have resulted in non-linear transformations; however, for the first time, a simple linear transformation is presented here. Two different approaches have been formulated and implemented, one of which does not require prior knowledge of the translation-rotation eigenvectors from diagonalization of the Hessian matrix.
View Article and Find Full Text PDF