BMC Genomics
January 2024
Background: Transcriptomes present a rich, multi-dimensional subset of genomics data. They provide broad insights into genetic sequence, and more significantly gene expression, across biological samples. This technology is frequently employed for describing the genetic response to experimental conditions and has created vast libraries of datasets which shed light on gene function across different tissues, diseases, diets and developmental stages in many species.
View Article and Find Full Text PDFSexual development involves the successive and overlapping processes of sex determination, sexual differentiation, and ultimately sexual maturation, enabling animals to reproduce. This provides a mechanism for enriched genetic variation which enables populations to withstand ever-changing environments, selecting for adapted individuals and driving speciation. The molecular mechanisms of sexual development display a bewildering diversity, even in closely related taxa.
View Article and Find Full Text PDFTranscriptome sequencing has opened the field of genomics to a wide variety of researchers, owing to its efficiency, applicability across species and ability to quantify gene expression. The resulting datasets are a rich source of information that can be mined for many years into the future, with each dataset providing a unique angle on a specific context in biology. Maintaining accessibility to this accumulation of data presents quite a challenge for researchers.
View Article and Find Full Text PDFNeuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family.
View Article and Find Full Text PDFBackground: The Crustacea are an evolutionarily diverse taxon which underpins marine food webs and contributes significantly to the global economy. However, our knowledge of crustacean endocrinology and development is far behind that of terrestrial arthropods. Here we present a unique insight into the molecular pathways coordinating crustacean metamorphosis, by reconciling nuclear receptor (NR) gene activity from a 12-stage, 3-replicate transcriptome in the ornate spiny lobster (Panulirus ornatus) during larval development.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2019
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies.
View Article and Find Full Text PDF