Chinese hamster ovary (CHO) cells in fed-batch cultures produce several metabolic byproducts derived from amino acid catabolism, some of which accumulate to growth inhibitory levels. Controlling the accumulation of these byproducts has been shown to significantly enhance cell proliferation. Interestingly, some of these byproducts have physiological roles that go beyond inhibition of cell proliferation.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cells in fed-batch cultures are known to consume large amounts of nutrients and divert significant portion of them towards the formation of byproducts, some of which, including lactate and ammonia, are known to be growth inhibitory in nature. A major fraction of these inhibitory metabolites are byproducts or intermediates of amino acid catabolism. Limiting the supply of amino acids has been shown to curtail the production of corresponding inhibitory byproducts resulting in enhanced growth and productivities in CHO cell fed-batch cultures (Mulukutla et al.
View Article and Find Full Text PDFAdditive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200 m. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications.
View Article and Find Full Text PDFThe photochemistry of 3-methyl-4-phenyl-1-germacyclopent-3-ene (4) and a deuterium-labeled derivative (4-d(2)) has been studied in solution by steady state and laser flash photolysis methods, with the goal of detecting the parent germylene (GeH(2)) directly and studying its reactivity in solution. Photolysis of 4 in C(6)D(12) containing acetic acid (AcOH) or methanol (MeOH) affords 2-methyl-3-phenyl-1,3-butadiene (6) and the O-H insertion products ROGeH(3) (R = Me or Ac) in yields of ca. 60% and 15-30%, respectively, along with numerous minor products which the deuterium-labeling studies suggest are mainly derived from hydrogermylation processes involving GeH(2) and diene 6.
View Article and Find Full Text PDFThe photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b, respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane.
View Article and Find Full Text PDFThe reactivity of diphenylgermylene (Ph2Ge) with several classes of germylene scavengers has been studied in hexane solution at 23 degrees C by laser flash photolysis of 3,4-dimethyl-1,1-diphenyl-1-germacyclopent-3-ene (1a), a clean and highly efficient precursor to the germylene and its dimer, tetraphenyldigermene (2a). The reactions studied include M-H insertion reactions with Group 14 hydrides (M = Si, Ge, Sn), halogen atom abstractions from bromo- and chlorocarbons, Lewis acid-base complexation with 1 degrees, 2 degrees, and 3 degrees aliphatic amines, and reaction with an aliphatic alkene, alkyne and diene, and oxygen. Absolute rate constants for (irreversible) scavenging of the germylene could be obtained by direct measurement of the germylene decay kinetics for all but the least efficient scavengers (triethylsilane, oxygen, chloroform, and 1-bromopentane), for which estimates of the rate constants were obtained by Stern-Volmer analysis of the reduction in digermene yield as a function of scavenger concentration.
View Article and Find Full Text PDFDiphenylgermylene (Ph2Ge) and its Ge=Ge doubly bonded dimer, tetraphenyldigermene (6a), have been characterized directly in solution for the first time by laser flash photolysis methods. The germylene is formed via (formal) cheletropic photocycloreversion of 3,4-dimethyl-1,1-diphenylgermacyclopent-3-ene (4a), which is shown to proceed in high chemical (>95%) and quantum yield (phi = 0.62) by steady-state trapping experiments with methanol, acetic acid, isoprene, and triethylsilane.
View Article and Find Full Text PDF