Molecular vaccines comprising antigen peptides and inflammatory cues make up a class of therapeutics that promote immunity against cancer and pathogenic diseases but often exhibit limited efficacy. Here, we engineered an antigen peptide delivery system to enhance vaccine efficacy by targeting dendritic cells and mediating cytosolic delivery. The delivery system consists of the nontoxic anthrax protein, protective antigen (PA), and a single-chain variable fragment (scFv) that recognizes the XCR1 receptor on dendritic cells (DCs).
View Article and Find Full Text PDFWith the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS).
View Article and Find Full Text PDFThe covalent fusion of immunostimulatory adjuvants to immunogenic antigens is a promising strategy for the development of effective synthetic vaccines for infectious diseases. Herein, we describe the conjugation of a mycobacterial peptide antigen from the 6 kDa early secretory antigenic target (ESAT6) to a suitably functionalised trehalose dibehenate (TDB), a potent glycolipid adjuvant targeting macrophage inducible C-type lectin (Mincle).
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
April 2022
A breadth of strategies are needed to efficiently modify oligonucleotides with peptides or lipids to capitalize on their therapeutic and diagnostic potential, including the modulation of chemical stability and for applications in cell-targeting and cell-permeability. The chemical linkages typically used in peptide oligonucleotide conjugates (POCs) have limitations in terms of stability and/or ease of synthesis. Herein, we report an efficient method for POC synthesis using a diselenide-selenoester ligation (DSL)-deselenization strategy that rapidly generates a stable amide linkage between the two biomolecules.
View Article and Find Full Text PDFLipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules PamCys and PamCys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space.
View Article and Find Full Text PDFLipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical.
View Article and Find Full Text PDFWhen displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand.
View Article and Find Full Text PDFBackground: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis.
Methods: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration.
The rise of multidrug resistant bacteria has significantly compromised our supply of antibiotics and poses an alarming medical and economic threat to society. To combat this problem, it is imperative that new antibiotics and treatment modalities be developed, especially those toward which bacteria are less capable of developing resistance. Peptide natural products stand as promising candidates to meet this need as bacterial resistance is typically slow in response to their unique modes of action.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants PamCys-SK or PamCys-SK These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4 T cell responses against ESAT6 and provided significant protection in the lungs from virulent aerosol challenge when administered to the pulmonary mucosa of mice.
View Article and Find Full Text PDFTuberculosis (TB) remains a staggering burden on global public health. Novel preventative tools are desperately needed to reach the targets of the WHO post-2015 End-TB Strategy. Peptide or protein-based subunit vaccines offer potential as safe and effective generators of protection, and enhancement of local pulmonary immunity may be achieved by mucosal delivery.
View Article and Find Full Text PDFAccess to lipopeptide-based vaccines for immunological studies remains a significant challenge owing to the amphipathic nature of the molecules, which makes them difficult to synthesize and purify to homogeneity. Here, we describe the application of a new peptide ligation technology, the diselenide-selenoester ligation (DSL), to access self-adjuvanting glycolipopeptide vaccines. We show that rapid ligation of glyco- and lipopeptides is possible via DSL in mixed organic solvent-aqueous buffer and, when coupled with deselenization chemistry, affords rapid and efficient access to a vaccine candidate possessing a MUC1 glycopeptide epitope and the lipopeptide adjuvant PamCys.
View Article and Find Full Text PDFCystic Fibrosis (CF) is an autosomal recessive disease affecting up to 90,000 people worldwide. Approximately 73% of patients are homozygous for the F508del cystic fibrosis transmembrane conductance regulator [CFTR] mutation. Traditionally treatment has only included supportive care.
View Article and Find Full Text PDFPeptide selenoesters have recently emerged as key building blocks for the ligation-based assembly of large polypeptides and proteins. Herein, we report an efficient solid-phase method for the high yielding and epimerisation-free synthesis of peptide selenoesters using a side-chain immobilisation strategy.
View Article and Find Full Text PDFDuring Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage.
View Article and Find Full Text PDF