Publications by authors named "Cameron Craig"

Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell.

View Article and Find Full Text PDF

Unlabelled: Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions.

View Article and Find Full Text PDF

Virus spread at the single-cell level is largely uncharacterized. We have designed and constructed a microfluidic device in which each nanowell contains a single, infected cell (donor) and a single, uninfected cell (recipient). Using a GFP-expressing poliovirus as our model, we observed both lytic and non-lytic spread.

View Article and Find Full Text PDF

The overexpression and misfolding of viral proteins in the endoplasmic reticulum (ER) may cause cellular stress, thereby inducing a cytoprotective, proteostatic host response involving phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2α). Here, we show that hepatitis A virus, a positive-strand RNA virus responsible for infectious hepatitis, adopts a stress-resistant, eIF2α-independent mechanism of translation to ensure the synthesis of viral proteins within the infected liver. Cap-independent translation directed by the hepatovirus internal ribosome entry site and productive hepatovirus infection of mice both require platelet-derived growth factor subunit A (PDGFA)-associated protein 1 (PDAP1), a small phosphoprotein of unknown function with eIF4E-binding activity.

View Article and Find Full Text PDF

Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions.

View Article and Find Full Text PDF
Article Synopsis
  • Chikungunya virus (CHIKV) is a mosquito-borne virus causing major outbreaks, with no FDA-approved treatments available.
  • Researchers optimized a screening assay for CHIKV's essential protein nsP2 and identified 153 potential drug candidates, including RA-0002034.
  • RA-0002034 effectively inhibits CHIKV nsP2 activity and viral replication, making it a promising compound for future therapeutic development against CHIKV and similar viruses.
View Article and Find Full Text PDF

Virus spread at the single-cell level is largely uncharacterized. We have designed and constructed a microfluidic device in which each nanowell contained a single, infected cell (donor) and a single, uninfected cell (recipient). Using a GFP-expressing poliovirus as our model, we observed both lytic and non-lytic spread.

View Article and Find Full Text PDF

Unlabelled: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign.

View Article and Find Full Text PDF
Article Synopsis
  • A 12-year-old spayed Beagle presented with exophthalmos, leading to a CT scan that showed a distinct mass behind the left eye.
  • The mass had varied tissue density and slightly increased enhancement after a contrast agent was used.
  • After surgical removal, the mass was confirmed to be a hibernoma, a benign tumor made of brown fat, which can often be misidentified in imaging studies.
View Article and Find Full Text PDF

Enterovirus D68 (EV-D68) contributes significantly to pathogen-induced respiratory illnesses and severe neurological disorders like acute flaccid myelitis. We lack EV-D68 preventive measures, and knowledge of its molecular and cellular biology is incomplete. Multiple studies have highlighted the role of membrane compartments and autophagy during picornavirus multiplication.

View Article and Find Full Text PDF

Virus-induced changes in host lipid metabolism are an important but poorly understood aspect of viral pathogenesis. By combining nontargeted lipidomics analyses of infected cells and purified extracellular quasi-enveloped virions with high-throughput RNA sequencing and genetic depletion studies, we show that hepatitis A virus, an hepatotropic picornavirus, broadly manipulates the host cell lipid environment, enhancing synthesis of ceramides and other sphingolipids and transcriptionally activating acyl-coenzyme A synthetases and fatty acid elongases to import and activate long-chain fatty acids for entry into the fatty acid elongation cycle. Phospholipids with very-long-chain acyl tails (>C22) are essential for genome replication, whereas increases in sphingolipids support assembly and release of quasi-enveloped virions wrapped in membranes highly enriched for sphingomyelin and very-long-chain ceramides.

View Article and Find Full Text PDF

West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes.

View Article and Find Full Text PDF

We are 52 Black scientists. Here, we establish the context of Juneteenth in STEMM and discuss the barriers Black scientists face, the struggles they endure, and the lack of recognition they receive. We review racism's history in science and provide institutional-level solutions to reduce the burdens on Black scientists.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses pose significant health challenges, leading to issues like respiratory infections, cancer, and neurological impairments, but virology research has developed vaccines and antivirals to mitigate these problems.
  • The COVID-19 pandemic has heightened public scrutiny of virology, especially regarding the safe conduct of research with human pathogens, leading to confusion and misinterpretation about the origins of SARS-CoV-2.
  • This article aims to clarify misconceptions by explaining gain-of-function research, the origins of SARS-CoV-2, and the regulatory frameworks in place, fostering informed discussions and emphasizing the need for balanced, evidence-based dialogue in virology.
View Article and Find Full Text PDF
Article Synopsis
  • Viruses have historically caused serious health issues, including respiratory infections and cancer, leading to significant virology research that resulted in vaccines and antiviral treatments.
  • The COVID-19 pandemic highlighted the necessity for careful research on human pathogens, creating both concerns and confusion about the safety of virology work and the origins of SARS-CoV-2.
  • The article aims to clarify misunderstandings by explaining gain-of-function research, exploring the origins of SARS-CoV-2, and discussing regulatory oversight, while advocating for rational and evidence-based discussions to guide policy decisions in virology.
View Article and Find Full Text PDF
Article Synopsis
  • Viruses pose significant health challenges, leading to various issues such as respiratory infections and cancer, prompting virology research to develop vaccines and antiviral treatments over the past 60+ years.
  • The COVID-19 pandemic has intensified focus on virology, bringing up safety concerns about research involving human pathogens and creating public confusion between safe research practices and the origins of SARS-CoV-2.
  • The article aims to clarify these issues by discussing gain-of-function research, the origins of SARS-CoV-2, and current regulatory frameworks, advocating for informed, balanced conversations to support necessary virology research.
View Article and Find Full Text PDF

RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism.

View Article and Find Full Text PDF

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection.

View Article and Find Full Text PDF

The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially.

View Article and Find Full Text PDF
Article Synopsis
  • Some effective antiviral treatments include ribonucleos(t)ide analogs, but coronaviruses have a proofreading enzyme (ExoN) that reduces their effectiveness.
  • Research on ExoN's structure and function has shown that it prefers double-stranded RNA, hydrolyzes only one or two nucleotides at a time, and is influenced by the composition of terminal base pairs.
  • Several modifications to the 3'-RNA end have been identified that can block ExoN activity, suggesting that designing new antiviral ribonucleotides resistant to ExoN could be possible.
View Article and Find Full Text PDF

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown.

View Article and Find Full Text PDF

CRISPR/Cas-mediated genome editing in human pluripotent stem cells (hPSCs) offers unprecedented opportunities for developing disease modeling, drug screening and cell-based therapies. To efficiently deliver the CRISPR components, here we developed two all-in-one vectors containing Cas9/gRNA and inducible Cas13d/gRNA cassettes for robust genome editing and RNA interference respectively. These vectors utilized the PiggyBac transposon system, which allows stable expression of CRISPR components in hPSCs.

View Article and Find Full Text PDF

Most child sexual abuse (CSA) remains unreported and undetected. Despite this, much of what we know about perpetrators of CSA is derived from samples of convicted CSA offenders. Significant knowledge gaps remain about those who have evaded detection.

View Article and Find Full Text PDF