Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor accuracy and is time intensive.
View Article and Find Full Text PDFFor complex machine learning (ML) algorithms to gain widespread acceptance in decision making, we must be able to identify the features driving the predictions. Explainability models allow transparency of ML algorithms, however their reliability within high-dimensional data is unclear. To test the reliability of the explainability model SHapley Additive exPlanations (SHAP), we developed a convolutional neural network to predict tissue classification from Genotype-Tissue Expression (GTEx) RNA-seq data representing 16,651 samples from 47 tissues.
View Article and Find Full Text PDFPurpose: Keratinocyte cancers are exceedingly common in high-risk populations, but accurate measures of incidence are seldom derived because the burden of manually reviewing pathology reports to extract relevant diagnostic information is excessive. Thus, we sought to develop supervised learning algorithms for classifying basal and squamous cell carcinomas and other diagnoses, as well as disease site, and incorporate these into a Web application capable of processing large numbers of pathology reports.
Methods: Participants in the QSkin study were recruited in 2011 and comprised men and women age 40-69 years at baseline (N = 43,794) who were randomly selected from a population register in Queensland, Australia.