Publications by authors named "Cameron Bass"

Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis.

View Article and Find Full Text PDF

Purpose: This study aims to explore how cyclic loading influences creep response in the lumbar spine under combined flexion-compression loading.

Methods: Ten porcine functional spinal units (FSUs) were mechanically tested in cyclic or static combined flexion-compression loading. Creep response between loading regimes was compared using strain-time histories and linear regression.

View Article and Find Full Text PDF

Purpose: Measuring head kinematics data is important to understand and develop methods and standards to mitigate head injuries in contact sports. Instrumented mouthguards (iMGs) have been developed to address coupling issues with previous sensors. Although validated with anthropomorphic test devices (ATDs), there is limited post-mortem human subjects (PMHS) data which provides more accurate soft tissue responses.

View Article and Find Full Text PDF

Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration.

View Article and Find Full Text PDF

Low back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury.

View Article and Find Full Text PDF
Article Synopsis
  • Instrumented mouthguard systems (iMGs) are being tested for their accuracy in measuring head movements during sports, especially in real human cadaver heads rather than on dummies.
  • In a study, two different types of boil-and-bite iMGs were used on unembalmed cadaver heads, fitted with helmets and subjected to impact tests at various velocities.
  • Results showed that while one iMG performed reasonably under certain conditions, both systems had inconsistencies with reference measurements, underscoring the need for further validation in real-life scenarios to improve their effectiveness.
View Article and Find Full Text PDF

Background: The current behind armor blunt trauma (BABT) injury criterion uses a single penetration limit of 44 mm in Roma Plastilina clay and is not specific to thoracoabdominal regions. However, different regions in the human body have different injury tolerances. This manuscript presents a matched-pair hybrid test paradigm with different experimental models and candidate metrics to develop regional human injury criteria.

View Article and Find Full Text PDF

Low back pain (LBP) affects 50-80% of adults at some point in their lifetime, yet the etiology of injury is not well understood. Those exposed to repeated flexion-compression are at a higher risk for LBP, such as helicopter pilots and motor vehicle operators. Animal injury models offer insight into in vivo injury mechanisms, but interspecies scaling is needed to relate animal results to human.

View Article and Find Full Text PDF

Motor vehicle accidents are the leading cause of death for young adults 18-29 years old worldwide, resulting in nearly 1 million years of life lost annually in the United States. Despite improvements in vehicle safety technologies, young women are at higher risk of dying in car crashes compared with men in matched scenarios. Vehicle crash testing primarily revolves around test dummies representative of the 50th percentile adult male, potentially resulting in these differences in fatality risk for female occupants compared to males.

View Article and Find Full Text PDF

Introduction: For behind armor blunt trauma (BABT), recent prominent BABT standards for chest plate define a maximum deformation distance of 44 mm in clay. It was developed for soft body armor applications with limited animal, gelatin, and clay tests. The legacy criterion does not account for differing regional thoracoabdominal tolerances to behind armor-induced injury.

View Article and Find Full Text PDF

Injury risk assessment based on cadaver data is essential for informing safety standards. The common 'matched-pair' method matches energy-based inputs to translate human response to anthropometric test devices (ATDs). However, this method can result in less conservative human injury risk curves due to intrinsic differences between human and ATDs.

View Article and Find Full Text PDF

Military personnel extensively use night vision goggles (NVGs) in contemporary scenarios. Since NVGs may induce or increase injuries from falls or vehicular accidents, biomechanical risk assessments would aid design goal or mitigation strategy development. This study assesses injury risks from NVG impact on cadaver heads using impactors modeled on the PVS-14 NVG.

View Article and Find Full Text PDF

Modern changes in warfare have shown an increased incidence of lumbar spine injuries caused by underbody blast events. The susceptibility of the lumbar spine during these scenarios could be exacerbated by coupled moments that act with the rapid compressive force depending on the occupant's seated posture. In this study, a combined loading lumbar spine vertebral body fracture injury criteria (L) across a range of postures was established from 75 tests performed on instrumented cadaveric lumbar spine specimens.

View Article and Find Full Text PDF

Cavitation has been shown to have implications for head injury, but currently there is no solution for detecting the formation of cavitation through the skull during blunt impact. The goal of this communication is to confirm the wideband acoustic wavelet signature of cavitation collapse, and determine that this signature can be differentiated from the noise of a blunt impact. A controlled, laser induced cavitation study was conducted in an isolated water tank to confirm the wide band acoustic signature of cavitation collapse in the absence of a blunt impact.

View Article and Find Full Text PDF

Objective: Researchers have found a variety of uses for the Hybrid III (HIII) dummy that fall beyond the scope of its original purpose as an automotive crash test dummy. Some of these expanded roles for the HIII introduce situations that were not envisioned in the dummy's original design parameters, such as a relatively rapid succession of tests or outdoor testing scenarios where temperature is not easily controlled. This study investigates how the axial compressive stiffness of the HIII lumbar spine component is affected by the duration of the time interval between tests.

View Article and Find Full Text PDF

Understanding the initiation of bony failure is critical in assessing the progression of bone fracture and in developing injury criteria. Detection of acoustic emissions in bone can be used to identify fractures more sensitively and at an earlier inception time compared to traditional methods. However, high rate loading conditions, complex specimen-device interaction or geometry may cause other acoustic signals.

View Article and Find Full Text PDF

Introduction: This study examined the effects of simulated and actual vessel motion at high seas on task load and surgical performance.

Methods: This project was performed in phases. Phase I was a feasibility study.

View Article and Find Full Text PDF

Since World War I, helmets have been used to protect the head in warfare, designed primarily for protection against artillery shrapnel. More recently, helmet requirements have included ballistic and blunt trauma protection, but neurotrauma from primary blast has never been a key concern in helmet design. Only in recent years has the threat of direct blast wave impingement on the head-separate from penetrating trauma-been appreciated.

View Article and Find Full Text PDF

The Veterans Health Administration determined that over 250,000 U.S. service members were diagnosed with a traumatic brain injury (TBI) between 2008 and 2018, of which a great proportion were due to blast exposure.

View Article and Find Full Text PDF

Introduction: Attempting to expedite delivery of care to wounded war fighters, this study aimed to quantify the ability of medical and surgical teams to perform lifesaving damage control and resuscitation procedures aboard nontraditional US Navy Vessels on high seas. Specifically, it looked at the ability of the teams to perform procedures in shipboard operating and emergency rooms by analyzing motion of personnel during the procedures.

Methods: One hundred and twelve damage control and resuscitation procedures were performed during a voyage of the US Naval Ship Brunswick in transit from Norfolk, Virginia, to San Diego, California.

View Article and Find Full Text PDF

The study of pediatric head injury relies heavily on the use of finite element models and child anthropomorphic test devices (ATDs). However, these tools, in the context of pediatric head injury, have yet to be validated due to a paucity of pediatric head response data. The goal of this study is to investigate the response and injury tolerance of the pediatric head to impact.

View Article and Find Full Text PDF

Objectives: Increased neck strength has been hypothesized to lower sports related concussion risk, but lacks experimental evidence. The goal is to investigate the role cervical muscle strength plays in blunt impact head kinematics and the biofidelity of common experimental neck conditions. We hypothesize head kinematics do not vary with neck activation due to low short term human head-to-neck coupling; because of the lack of coupling, free-head experimental conditions have higher biofidelity than Hybrid III necks.

View Article and Find Full Text PDF

Background: Glycogen storage disease type Ia (GSD Ia) in dogs closely resembles human GSD Ia. Untreated patients with GSD Ia develop complications associated with glucose-6-phosphatase (G6Pase) deficiency. Survival of human patients on intensive nutritional management has improved; however, long-term complications persist including renal failure, nephrolithiasis, hepatocellular adenomas (HCA), and a high risk for hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF