Publications by authors named "Cameron A Ackerley"

Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development.

View Article and Find Full Text PDF

Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen.

View Article and Find Full Text PDF

Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies).

View Article and Find Full Text PDF

Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein.

View Article and Find Full Text PDF

Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice.

View Article and Find Full Text PDF

X-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses several types of progressive myoclonus epilepsies, focusing on Lafora disease, which has a distinct progression starting in the teenage years and leads to severe neurological decline and death within a decade.
  • Lafora bodies, unique to this disease, are formed from malfunctioning glycogen molecules due to mutations in the EPM2A and EPM2B genes, which affect the enzymes responsible for proper glycogen structure and solubility.
  • A newly identified early-onset Lafora body disease has been mapped to chromosome 4q21.21, with a mutation in the PRDM8 gene, presenting symptoms at age 5 and creating a disease trajectory that is prolonged compared to typical Lafora disease,
View Article and Find Full Text PDF

The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively.

View Article and Find Full Text PDF

Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan, accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is catalyzed by glycogen synthase, which is activated through dephosphorylation by glycogen-associated protein phosphatase-1 (PP1).

View Article and Find Full Text PDF

Objective: Glycogen, the largest cytosolic macromolecule, acquires solubility, essential to its function, through extreme branching. Lafora bodies are aggregates of polyglucosan, a long, linear, poorly branched, and insoluble form of glycogen. Lafora bodies occupy vast numbers of neuronal dendrites and perikarya in Lafora disease in time-dependent fashion, leading to intractable and fatal progressive myoclonus epilepsy.

View Article and Find Full Text PDF

Neurotransmitter release depends critically on close spatial coupling of Ca(2+) entry to synaptic vesicles at the nerve terminal; however, the molecular substrates determining their physical proximity are unknown. Using the calyx of Held synapse, where "microdomain" coupling predominates at immature stages and developmentally switches to "nanodomain" coupling, we demonstrate that deletion of the filamentous protein Septin 5 imparts immature synapses with striking morphological and functional features reminiscent of mature synapses. This includes synaptic vesicles tightly localized to active zones, resistance to the slow Ca(2+) buffer EGTA and a reduced number of Ca(2+) channels required to trigger single fusion events.

View Article and Find Full Text PDF

Objective: Individuals with cystic fibrosis (CF) have exercise intolerance and skeletal muscle weakness not solely attributable to physical inactivity or pulmonary function abnormalities. CF transmembrane conductance regulator (CFTR) has been demonstrated in human bronchial smooth and cardiac muscle. Using (31)P-magnetic resonance spectroscopy of skeletal muscle, we showed CF patients to have lower resting muscle adenosine triphosphate and delayed phosphocreatine recovery times after high-intensity exercise, suggesting abnormal muscle aerobic metabolism; and higher end-exercise pH values, suggesting altered bicarbonate transport.

View Article and Find Full Text PDF

A 22-year-old girl presented with convulsive status epilepticus and a previous history of recurrent seizures, myoclonus, ataxia and impaired cognitive functions. Neurological examination revealed rest and action-induced myoclonus, pyramidal signs and opposition hypertonia. Testing revealed severe metabolic acidosis, elevated transaminases and creatine kinase, and respiratory insufficiency.

View Article and Find Full Text PDF
Article Synopsis
  • A mouse mutant named Myshkin (Myk) exhibits autosomal dominant complex partial seizures and shows a low threshold for hippocampal seizures, along with neuronal degeneration.
  • Researchers discovered that Myk/+ mice carry a specific mutation (I810N) in the Na(+),K(+)-ATPase alpha3 isoform, leading to a significant reduction (42%) in ATPase activity in the brain.
  • Introducing additional copies of the functional Na(+),K(+)-ATPase alpha3 via transgenesis can prevent epilepsy and restore ATPase activity, highlighting its crucial role in controlling seizure activity.
View Article and Find Full Text PDF

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy.

View Article and Find Full Text PDF

Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin.

View Article and Find Full Text PDF

Lafora epilepsy is characterized by starch formation in brain and skin and is diagnosed by skin biopsy or mutation detection. It has variable ages of onset (6-19 years) and death (18-32 years) even with the same mutation, likely due to extramutational factors. The authors identified 14 Lafora epilepsy patients in the genetic isolate of tribal Oman.

View Article and Find Full Text PDF

Background: A 20-year-old woman presented to a specialist epilepsy center with a 3-year history of drug-resistant epileptic seizures, progressive myoclonus, ataxia, and cognitive decline.

Investigations: Neurological examination, neuropsychological testing, electrophysiological studies, skin biopsy, MRI, genetic testing, and autopsy.

Diagnosis: Lafora disease (EPM2), resulting from a homozygous missense mutation in EPM2B (NHLRC1; c205C>G; Pro69Ala).

View Article and Find Full Text PDF

An understanding of the structure and composition of the myelin sheath is essential to understand the pathogenesis of demyelinating diseases such as multiple sclerosis (MS). The presence of citrulline in myelin proteins in particular myelin basic protein (MBP) causes an important change in myelin structure, which destabilizes myelin. The peptidylarginine deiminases (PADs) are responsible for converting arginine in proteins to citrulline.

View Article and Find Full Text PDF

Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes.

View Article and Find Full Text PDF

Lafora progressive myoclonus epilepsy, caused by defective laforin or malin, insidiously present in normal teenagers with cognitive decline, followed by rapidly intractable epilepsy, dementia and death. Pathology reveals neurodegeneration with neurofibrillary tangle formation and Lafora bodies (LBs). LBs are deposits of starch-like polyglucosans, insufficiently branched and hence insoluble glycogen molecules resulting from glycogen synthase (GS) overactivity relative to glycogen branching enzyme activity.

View Article and Find Full Text PDF

Epilepsy afflicts 1% of humans and 5% of dogs. We report a canine epilepsy mutation and evidence for the existence of repeat-expansion disease outside humans. A canid-specific unstable dodecamer repeat in the Epm2b (Nhlrc1) gene recurrently expands, causing a fatal epilepsy and contributing to the high incidence of canine epilepsy.

View Article and Find Full Text PDF

Lafora disease (LD) is a fatal and the most common form of adolescent-onset progressive epilepsy. Fulminant endoplasmic reticulum (ER)-associated depositions of starch-like long-stranded, poorly branched glycogen molecules [known as polyglucosans, which accumulate to form Lafora bodies (LBs)] are seen in neuronal perikarya and dendrites, liver, skeletal muscle and heart. The disease is caused by loss of function of the laforin dual-specificity phosphatase or the malin E3 ubiquitin ligase.

View Article and Find Full Text PDF