Publications by authors named "Camenisch G"

Article Synopsis
  • Drug-induced cholestasis (DIC) is a significant concern in drug development, as it disrupts bile flow and causes toxic buildup of bile acids in the liver, representing a type of drug-induced liver injury (DILI).
  • Researchers developed a predictive model using in vitro data from 47 drugs, which distinguished between drugs with and without DILI concerns, achieving a strong predictive performance (p-value of 0.039, PR AUC of 0.91).
  • The study highlights the importance of multiple liver processes in bile acid regulation and suggests that using a quantitative model in preclinical stages can improve drug safety and reduce failures in later development stages.
View Article and Find Full Text PDF

Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) experiments using microwave (mw) pulse sequences are one approach to transfer the larger polarization on the electron spin to nuclear spins of interest. How the result of such experiments depends on the external magnetic field and the excitation power is part of an ongoing debate and of paramount importance for applications that require high chemical-shift resolution. To date numerical simulations using operator-based Floquet theory have been used to predict and explain experimental data.

View Article and Find Full Text PDF

Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC).

View Article and Find Full Text PDF

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates.

View Article and Find Full Text PDF

Emerging digital assessment of biomarkers by linking health-related data obtained from wearable electronic devices and embedded health and fitness sensors in smartphones is opening up the possibility of creating a continuous remote-monitoring platform for disease management. It is considered that the built-in flashlight of smartphones may be utilized to remotely program genetically engineered designer cells for on-demand delivery of protein-based therapeutics. Here, the authors present smartphone-induced insulin release in β-cell line (iβ-cell) technology for traceless light-triggered rapid insulin secretion, employing the light-activatable receptor melanopsin to induce calcium influx and membrane depolarization upon illumination.

View Article and Find Full Text PDF

Polymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome-wide immune polymorphism sets into high-throughput genotyping assays are scarce.

View Article and Find Full Text PDF

Although Accelerator Mass Spectrometry (AMS) offers unparalleled sensitivity by investigating the fate of C-labeled compounds within the organism, its widespread use in ADME (absorption, distribution, metabolism, excretion) studies is limited. Conventional approaches based on Liquid Scintillation Counting (LSC) are still preferred, in particular because of complexity and costs associated with AMS measurements. Progress made over the last decade towards more compact AMS systems increased the interest in a combustion-based AMS approach allowing the analysis of samples in gaseous form.

View Article and Find Full Text PDF
Article Synopsis
  • Wearable devices like smart watches use green LEDs for monitoring health through photoplethysmography, and researchers have developed a new system called Glow Control that can trigger gene expression with light.
  • Glow Control utilizes a combination of engineered proteins to activate a gene's expression when illuminated, enabling remote control via devices like the Apple Watch.
  • This innovative approach has shown promise in treating type-2 diabetes by enabling implanted cells to produce a hormone on demand, ultimately linking personalized medicine with technology for improved healthcare solutions.
View Article and Find Full Text PDF

Tropifexor (NVP-LJN452) is a highly potent, selective, nonsteroidal, non-bile acid farnesoid X receptor agonist for the treatment of nonalcoholic steatohepatitis. Its absorption, metabolism, and excretion were studied after a 1-mg oral dose of [C]tropifexor was given to four healthy male subjects. Mass balance was achieved with ∼94% of the administered dose recovered in excreta through a 312-hour collection period.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying bird genomes to learn more about their diversity and evolution, analyzing 363 bird genomes from nearly all bird families for a big project called Bird 10,000 Genomes (B10K).
  • By using advanced methods, they can compare DNA more effectively, finding new patterns and understanding how different bird species are related.
  • This research helps improve our understanding of how birds evolve and can also aid in protecting them in the future.
View Article and Find Full Text PDF

Capmatinib (INC280), a highly selective and potent inhibitor of the MET receptor tyrosine kinase, has demonstrated clinically meaningful efficacy and a manageable safety profile in patients with advanced non-small-cell lung cancer harboring exon 14-skipping mutations. We investigated the absorption, distribution, metabolism, and excretion of capmatinib in six healthy male volunteers after a single peroral dose of 600 mg C-labeled capmatinib. The mass balance, blood and plasma radioactivity, and plasma capmatinib concentrations were determined along with metabolite profiles in plasma, urine, and feces.

View Article and Find Full Text PDF

Molecular helium represents a benchmark system for testing ab initio calculations on few-electron molecules. We report on the determination of the adiabatic ionization energy of the a ^{3}Σ_{u}^{+} state of He_{2}, corresponding to the energy interval between the a ^{3}Σ_{u}^{+} (v^{''}=0, N^{''}=1) state of He_{2} and the X^{+} ^{2}Σ_{u}^{+} (v^{+}=0, N^{+}=1) state of He_{2}^{+}, and of the lowest rotational interval of He_{2}^{+}. These measurements rely on the excitation of metastable He_{2} molecules to high Rydberg states using frequency-comb-calibrated continuous-wave UV radiation in a counterpropagating laser-beam setup.

View Article and Find Full Text PDF

Ribociclib (LEE011, Kisqali ®) is a highly selective small molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), which has been approved for the treatment of advanced or metastatic breast cancer. A human ADME study was conducted in healthy male volunteers following a single oral dose of 600 mg [ C]-ribociclib. Mass balance, blood and plasma radioactivity, and plasma ribociclib concentrations were measured.

View Article and Find Full Text PDF

Resting metabolic rate (RMR) is a potentially important axis of physiological adaptation to the thermal environment. However, our understanding of the causes and consequences of individual variation in RMR in the wild is hampered by a lack of data, as well as analytical challenges. RMR measurements in the wild are generally characterized by large measurement errors and a strong dependency on mass.

View Article and Find Full Text PDF

Proton detected solid-state NMR under fast magic-angle-spinning (MAS) conditions is currently redefining the applications of solid-state NMR, in particular in structural biology. Understanding the contributions to the spectral linewidth is thereby of paramount importance. When disregarding the sample-dependent inhomogeneous contributions, the NMR proton linewidth is defined by homogeneous broadening, which has incoherent and coherent contributions.

View Article and Find Full Text PDF

Fevipiprant, a prostaglandin D receptor 2 antagonist, is in clinical development as a treatment for asthma. The goal of this study was to assess the potential of fevipiprant to cause drug-drug interactions (DDI) as a perpetrator, that is, by altering the pharmacokinetics (PK) of co-medications. In vitro drug interaction studies of clinically relevant drug metabolizing enzymes and transporters were conducted for fevipiprant and its acyl glucuronide (AG) metabolite.

View Article and Find Full Text PDF

The generation of reliable kinetic parameters to describe P-glycoprotein (P-gp) activity is essential for predicting the impact of efflux transport on gastrointestinal drug absorption. The compound-specific selection of in vitro assay designs and ensuing data analysis methods is explored in this manuscript. We measured transcellular permeability and cellular uptake of five P-gp substrates in Caco-2 and LLC-PK1 MDR1 cells.

View Article and Find Full Text PDF

Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human-modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation.

View Article and Find Full Text PDF

Background: Although the liver is the primary organ of drug metabolism, the lungs also contain drug-metabolizing enzymes and may, therefore, contribute to the elimination of drugs. In this investigation, the Precision-cut Lung Slice (PCLS) technique was standardized with the aims of characterizing and comparing rat and human pulmonary drug metabolizing activity.

Method: Due to the limited availability of human lung tissue, standardization of the PCLS method was performed with rat lung tissue.

View Article and Find Full Text PDF

The eye is a complex organ with a series of anatomic barriers that provide protection from physical and chemical injury while maintaining homeostasis and function. The physiology of the eye is multifaceted, with dynamic flows and clearance mechanisms. This review highlights that in vitro ocular transport and metabolism models are confined by the availability of clinically relevant absorption, distribution, metabolism, and excretion (ADME) data.

View Article and Find Full Text PDF

The Niata was a cattle variety from South America that figured prominently in writings on evolution by Charles Darwin. Its shortened head and other aspects of its unusual morphology have been subject of unsettled discussions since Darwin's time. Here, we examine the anatomy, cranial shape, skull biomechanics, and population genetics of the Niata.

View Article and Find Full Text PDF

Siponimod, a next-generation selective sphingosine-1-phosphate receptor modulator, is currently being investigated for the treatment of secondary progressive multiple sclerosis. We investigated the absorption, distribution, metabolism, and excretion (ADME) of a single 10-mg oral dose of [C]siponimod in four healthy men. Mass balance, blood and plasma radioactivity, and plasma siponimod concentrations were measured.

View Article and Find Full Text PDF

The expression of flavin-containing monooxygenase (FMO) varies extensively between human and commonly used preclinical species such as rat and mouse. The aim of this study was to investigate the pulmonary FMO activity in rat using benzydamine. Furthermore, the contribution of rat lung to the clearance of benzydamine was investigated using an in vivo pulmonary extraction model.

View Article and Find Full Text PDF