Publications by authors named "Camelia Prodan"

Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold classification of topological phases with particle-hole symmetry. In two dimensions, TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.

View Article and Find Full Text PDF

Topological metals are conducting materials with gapless band structures and nontrivial edge-localized resonances. Their discovery has proven elusive because traditional topological classification methods require band gaps to define topological robustness. Inspired by recent theoretical developments that leverage techniques from the field of C-algebras to identify topological metals, here, we directly observe topological phenomena in gapless acoustic crystals and realize a general experimental technique to demonstrate their topology.

View Article and Find Full Text PDF

A Thouless pump can be regarded as a dynamical version of the integer quantum Hall effect. In a finite-size configuration, such a topological pump displays edge modes that emerge dynamically from one bulk band and dive into the opposite bulk band, an effect that can be reproduced with both quantum and classical systems. Here, we report the first unassisted dynamic energy transfer across a metamaterial, via pumping of such topological edge modes.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies highlight that two-dimensional chiral Hamiltonians can lead to topological flat frequency bands in 2D metamaterials, particularly at edge and seam locations.
  • The research employs mechanical systems with magnetically coupled spinners to validate that these flat edge bands align with topological predictions, demonstrating their flatness across the projected reciprocal space.
  • The findings suggest that the spacing between edges influences the properties of these bands, and the study opens the door for future applications in various metamaterials like photonic and electronic systems.
View Article and Find Full Text PDF

Topological boundary and interface modes are generated in an acoustic waveguide by simple quasiperiodic patterning of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed.

View Article and Find Full Text PDF

Large classes of electronic, photonic, and acoustic crystals and quasi-crystals have been predicted to support topological wave-modes. Some of these modes are stabilized by certain symmetries but others occur as pure wave phenomena, hence they can be observed in many other media that support wave propagation. Surface water-waves are mechanical in nature but very different from the elastic waves, hence they can provide a new platform for studying topological wave-modes.

View Article and Find Full Text PDF

Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes.

View Article and Find Full Text PDF

Here we present a carbon nanotube based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution. The device utilizes standard complementary metal oxide semiconductor (CMOS) technologies for fabrication, allowing it to be easily scalable (down to a few nanometers). Nanotubes are deposited using electrophoresis after fabrication in order to maintain CMOS compatibility.

View Article and Find Full Text PDF

Microtubules (MTs) are self-assembled hollow protein tubes playing important functions in live cells. Their building block is a protein called tubulin, which self-assembles in a particulate 2 dimensional lattice. We study the vibrational modes of this lattice and find Dirac points in the phonon spectrum.

View Article and Find Full Text PDF

The presence of the resting membrane potential has a strong effect on the dielectric behavior of cell suspensions. Using this observation and a well-established theoretical model, the low frequency dielectric dispersion curves of E. coli cell suspensions are de-convoluted to obtain the resting membrane potential of E.

View Article and Find Full Text PDF

We develop a theoretical framework to describe the dielectric response of live cells in suspensions when placed in low external electric fields. The treatment takes into account the presence of the cell's membrane and of the charge movement at the membrane's surfaces. For spherical cells suspended in aqueous solutions, we give an analytic solution for the dielectric function, which is shown to account for the alpha- and beta-plateaus seen in many experimental data.

View Article and Find Full Text PDF