Publications by authors named "Camelia Gliser"

Purpose: Report pharmacokinetic (PK)/pharmacodynamic (PD) findings from the phase III ClarIDHy study and any association between PK/PD parameters and treatment outcomes in this population.

Methods: Patients with mutant isocitrate dehydrogenase 1 (mIDH1) advanced cholangiocarcinoma were randomized at a 2:1 ratio to receive ivosidenib or matched placebo. Crossover from placebo to ivosidenib was permitted at radiographic disease progression.

View Article and Find Full Text PDF

Importance: Isocitrate dehydrogenase 1 (IDH1) variations occur in up to approximately 20% of patients with intrahepatic cholangiocarcinoma. In the ClarIDHy trial, progression-free survival as determined by central review was significantly improved with ivosidenib vs placebo.

Objective: To report the final overall survival (OS) results from the ClarIDHy trial, which aimed to demonstrate the efficacy of ivosidenib (AG-120)-a first-in-class, oral, small-molecule inhibitor of mutant IDH1-vs placebo for patients with unresectable or metastatic cholangiocarcinoma with IDH1 mutation.

View Article and Find Full Text PDF

 mutations occur in approximately 13% of intrahepatic cholangiocarcinomas (IHCCs). The oral, targeted, mutant IDH1 (mIDH1) inhibitor ivosidenib (AG-120) suppresses production of the oncometabolite D-2-hydroxyglutarate, promoting disease stabilization and improved progression-free survival (PFS) in m IHCC. Harnessing matched baseline and on-treatment biopsies, we investigate the potential mechanisms underlying ivosidenib's efficacy.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase 1 (IDH1) mutations occur in approximately 13% of patients with intrahepatic cholangiocarcinoma, a relatively uncommon cancer with a poor clinical outcome. The aim of this international phase 3 study was to assess the efficacy and safety of ivosidenib (AG-120)-a small-molecule targeted inhibitor of mutated IDH1-in patients with previously treated IDH1-mutant cholangiocarcinoma.

Methods: This multicentre, randomised, double-blind, placebo-controlled, phase 3 study included patients from 49 hospitals in six countries aged at least 18 years with histologically confirmed, advanced, IDH1-mutant cholangiocarcinoma who had progressed on previous therapy, and had up to two previous treatment regimens for advanced disease, an Eastern Cooperative Oncology Group performance status score of 0 or 1, and a measurable lesion as defined by Response Evaluation Criteria in Solid Tumors version 1.

View Article and Find Full Text PDF

Purpose: Surgery is the primary therapy for localized chondrosarcoma; for locally advanced and/or metastatic disease, no known effective systemic therapy exists. Mutations in the isocitrate dehydrogenase 1/2 (IDH1/2) enzymes occur in up to 65% of chondrosarcomas, resulting in accumulation of the oncometabolite D-2-hydroxyglutarate (2-HG). Ivosidenib (AG-120) is a selective inhibitor of mutant IDH1 approved in the United States for specific cases of acute myeloid leukemia.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase-1 (IDH1) is mutated in up to 25% of cholangiocarcinomas, especially intrahepatic cholangiocarcinoma. Ivosidenib is an oral, targeted inhibitor of mutant IDH1 (mIDH1) approved in the USA for the treatment of mIDH1 acute myeloid leukaemia in newly diagnosed patients ineligible for intensive chemotherapy and patients with relapsed or refractory disease. Ivosidenib is under clinical evaluation in a phase 1 study that aims to assess its safety and tolerability in patients with mIDH1 solid tumours.

View Article and Find Full Text PDF

Background Mutant isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) enzymes produce the oncometabolite D-2-hydroxyglutarate (2-HG). Ivosidenib (AG-120) is a targeted mutant IDH1 inhibitor under evaluation in a phase 1 dose escalation and expansion study of IDH1-mutant advanced solid tumors including cholangiocarcinoma, chondrosarcoma, and glioma. We explored the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of ivosidenib in these populations.

View Article and Find Full Text PDF

Genomic studies in acute myeloid leukemias (AML) have identified mutations that drive altered DNA methylation, including and Here, we show that models of AML resulting from or mutations combined with mutations are sensitive to 5-azacytidine or to the IDH2 inhibitor AG-221, respectively. 5-azacytidine and AG-221 treatment induced an attenuation of aberrant DNA methylation and transcriptional output and resulted in a reduction in leukemic blasts consistent with antileukemic activity. These therapeutic benefits were associated with restoration of leukemic cell differentiation, and the normalization of hematopoiesis was derived from mutant cells.

View Article and Find Full Text PDF

Enchondromas are benign cartilage tumors and precursors to malignant chondrosarcomas. Somatic mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) are present in the majority of these tumor types. How these mutations cause enchondromas is unclear.

View Article and Find Full Text PDF

Mutations of IDH1 and IDH2, which produce the oncometabolite 2-hydroxyglutarate (2HG), have been identified in several tumors, including acute myeloid leukemia. Recent studies have shown that expression of the IDH mutant enzymes results in high levels of 2HG and a block in cellular differentiation that can be reversed with IDH mutant-specific small-molecule inhibitors. To further understand the role of IDH mutations in cancer, we conducted mechanistic studies in the TF-1 IDH2 R140Q erythroleukemia model system and found that IDH2 mutant expression caused both histone and genomic DNA methylation changes that can be reversed when IDH2 mutant activity is inhibited.

View Article and Find Full Text PDF

Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple αKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear.

View Article and Find Full Text PDF

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles.

View Article and Find Full Text PDF

A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q.

View Article and Find Full Text PDF