Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva.
View Article and Find Full Text PDFOral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally-sourced thermal inputs are represented in the gustatory cortex (GC) we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally-sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva.
View Article and Find Full Text PDFNeurons in the gustatory cortex (GC) represent taste through time-varying changes in their spiking activity. The predominant view is that the neural firing rate represents the sole unit of taste information. It is currently not known whether the phase of spikes relative to lick timing is used by GC neurons for taste encoding.
View Article and Find Full Text PDF